SEMモデルの指定と適合の方法を学ぶために、遺伝疫学分析のためにRパッケージOpenMxをレビューしています。私はこれが初めてなので、我慢してください。OpenMxユーザーガイドの 59ページの例に従っています。ここでは、次の概念モデルを描画します。
そして、パスを指定する際に、潜在的な「1」ノードの重みを顕在化したbmiノード「T1」と「T2」に0.6に設定しました。
関心のある主なパスは、各潜在変数からそれぞれの観測変数へのパスです。これらも推定され(したがって、すべて解放されます)、0.6の開始値と適切なラベルを取得します。
# path coefficients for twin 1
mxPath(
from=c("A1","C1","E1"),
to="bmi1",
arrows=1,
free=TRUE,
values=0.6,
label=c("a","c","e")
),
# path coefficients for twin 2
mxPath(
from=c("A2","C2","E2"),
to="bmi2",
arrows=1,
free=TRUE,
values=0.6,
label=c("a","c","e")
),
0.6の値は、共分散の推定から来ているbmi1
とbmi2
(厳密のモノ接合子双子ペア)。2つの質問があります。
パスに0.6の「開始」値が与えられると彼らが言うとき、これはGLMの推定のように、初期値で数値積分ルーチンを設定するようなものですか?
この値が一卵性双生児から厳密に推定されるのはなぜですか?