相関ランダム変数の積の分散はどのくらいですか?
相関ランダム変数の積の分散はどのくらいですか?
回答:
このトピックに関する必要以上の情報は、Goodman(1962):「K Random Variablesの積の分散」で見つけることができます。以前の論文(Goodman、1960)で、正確に2つのランダム変数の積の式が導出されました。これはやや単純です(まだかなり厄介ですが)。 。
ただし、完全を期すために、このようにします。
以下を想定します。
その後: またはそれと同等:
1960年の論文は、これが読者にとっての演習であることを示唆しています(1962年の論文の動機付けになったようです!)。
表記は似ていますが、いくつかの拡張子があります。
そして、ついに:
See the papers for details and slightly more tractable approximations!
Just to add to the awesome answer of Matt Krause (in fact easily derivable from there). If x, y are independent then,
In addition to the general formula given by Matt it may be worth noting that there is a somewhat more explicit formula for zero mean Gaussian random variables. It follows from Isserlis' theorem, see also Higher moments for the centered multivariate normal distribution.
Suppose that follows a multivariate normal distribution with mean 0 and covariance matrix . If the number of variables is odd,
and
It is, in fact, possible to implement the general formula. The most difficult part appears to be the computation of the required partitions. In R, this can be done with the function setparts
from the package partitions
. Using this package it was no problem to generate the 2,027,025 partitions for , the 34,459,425 partitions for could also be generated, but not the 654,729,075 partitions for (on my 16 GB laptop).
A couple of other things are worth noting. First, for Gaussian variables with non-zero mean it should be possible to derive an expression as well from Isserlis' theorem. Second, it is unclear (to me) if the above formula is robust against deviations from normality, that is, if it can be used as an approximation even if the variables are not multivariate normally distributed. Third, though the formulas above are correct, it is questionable how much the variance tells about the distribution of the products. Even for the distribution of the product is quite leptokurtic, and for larger it quickly becomes extremely leptokurtic.