週平均を保存するインフルエンザデータの補間


13

編集

必要な手順を正確に説明した論文を見つけました。唯一の違いは、月ごとの平均を維持しながら、月ごとの平均データを日ごとに補間することです。でアプローチを実装するのに苦労していRます。ヒントは大歓迎です。

元の

各週には、次のカウントデータがあります(1週間に1つの値)。

  • 医師の診察件数
  • インフルエンザの症例数

私の目標は、補間によって毎日のデータを取得することです(線形または切り捨てられたスプラインを考えました)。重要なことは、毎週の平均保存したいということですつまり、毎日補間されたデータの平均は、今週の記録値と等しくなるはずです。さらに、補間はスムーズでなければなりません。発生する可能性のある問題の1つは、特定の週の7日未満(たとえば、年の初めまたは終わり)であるということです。

この問題に関するアドバイスに感謝します。

どうもありがとう。

1995年(更新)のサンプルデータセットを次に示します。

structure(list(daily.ts = structure(c(9131, 9132, 9133, 9134, 
9135, 9136, 9137, 9138, 9139, 9140, 9141, 9142, 9143, 9144, 9145, 
9146, 9147, 9148, 9149, 9150, 9151, 9152, 9153, 9154, 9155, 9156, 
9157, 9158, 9159, 9160, 9161, 9162, 9163, 9164, 9165, 9166, 9167, 
9168, 9169, 9170, 9171, 9172, 9173, 9174, 9175, 9176, 9177, 9178, 
9179, 9180, 9181, 9182, 9183, 9184, 9185, 9186, 9187, 9188, 9189, 
9190, 9191, 9192, 9193, 9194, 9195, 9196, 9197, 9198, 9199, 9200, 
9201, 9202, 9203, 9204, 9205, 9206, 9207, 9208, 9209, 9210, 9211, 
9212, 9213, 9214, 9215, 9216, 9217, 9218, 9219, 9220, 9221, 9222, 
9223, 9224, 9225, 9226, 9227, 9228, 9229, 9230, 9231, 9232, 9233, 
9234, 9235, 9236, 9237, 9238, 9239, 9240, 9241, 9242, 9243, 9244, 
9245, 9246, 9247, 9248, 9249, 9250, 9251, 9252, 9253, 9254, 9255, 
9256, 9257, 9258, 9259, 9260, 9261, 9262, 9263, 9264, 9265, 9266, 
9267, 9268, 9269, 9270, 9271, 9272, 9273, 9274, 9275, 9276, 9277, 
9278, 9279, 9280, 9281, 9282, 9283, 9284, 9285, 9286, 9287, 9288, 
9289, 9290, 9291, 9292, 9293, 9294, 9295, 9296, 9297, 9298, 9299, 
9300, 9301, 9302, 9303, 9304, 9305, 9306, 9307, 9308, 9309, 9310, 
9311, 9312, 9313, 9314, 9315, 9316, 9317, 9318, 9319, 9320, 9321, 
9322, 9323, 9324, 9325, 9326, 9327, 9328, 9329, 9330, 9331, 9332, 
9333, 9334, 9335, 9336, 9337, 9338, 9339, 9340, 9341, 9342, 9343, 
9344, 9345, 9346, 9347, 9348, 9349, 9350, 9351, 9352, 9353, 9354, 
9355, 9356, 9357, 9358, 9359, 9360, 9361, 9362, 9363, 9364, 9365, 
9366, 9367, 9368, 9369, 9370, 9371, 9372, 9373, 9374, 9375, 9376, 
9377, 9378, 9379, 9380, 9381, 9382, 9383, 9384, 9385, 9386, 9387, 
9388, 9389, 9390, 9391, 9392, 9393, 9394, 9395, 9396, 9397, 9398, 
9399, 9400, 9401, 9402, 9403, 9404, 9405, 9406, 9407, 9408, 9409, 
9410, 9411, 9412, 9413, 9414, 9415, 9416, 9417, 9418, 9419, 9420, 
9421, 9422, 9423, 9424, 9425, 9426, 9427, 9428, 9429, 9430, 9431, 
9432, 9433, 9434, 9435, 9436, 9437, 9438, 9439, 9440, 9441, 9442, 
9443, 9444, 9445, 9446, 9447, 9448, 9449, 9450, 9451, 9452, 9453, 
9454, 9455, 9456, 9457, 9458, 9459, 9460, 9461, 9462, 9463, 9464, 
9465, 9466, 9467, 9468, 9469, 9470, 9471, 9472, 9473, 9474, 9475, 
9476, 9477, 9478, 9479, 9480, 9481, 9482, 9483, 9484, 9485, 9486, 
9487, 9488, 9489, 9490, 9491, 9492, 9493, 9494, 9495), class = "Date"), 
    wdayno = c(0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 
    1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 
    2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 
    3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 
    4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 
    5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 
    6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L, 1L, 2L, 3L, 4L, 5L, 6L, 
    0L, 1L, 2L, 3L, 4L, 5L, 6L, 0L), month = c(1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
    1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
    4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
    4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
    5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 
    6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
    6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 
    7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 
    8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 
    9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 
    9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
    10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
    10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
    11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
    11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
    12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 
    12, 12, 12, 12), year = c(1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 
    1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995, 1995), yearday = 0:364, 
    no.influ.cases = c(NA, NA, NA, 168L, NA, NA, NA, NA, NA, 
    NA, 199L, NA, NA, NA, NA, NA, NA, 214L, NA, NA, NA, NA, NA, 
    NA, 230L, NA, NA, NA, NA, NA, NA, 267L, NA, NA, NA, NA, NA, 
    NA, 373L, NA, NA, NA, NA, NA, NA, 387L, NA, NA, NA, NA, NA, 
    NA, 443L, NA, NA, NA, NA, NA, NA, 579L, NA, NA, NA, NA, NA, 
    NA, 821L, NA, NA, NA, NA, NA, NA, 1229L, NA, NA, NA, NA, 
    NA, NA, 1014L, NA, NA, NA, NA, NA, NA, 831L, NA, NA, NA, 
    NA, NA, NA, 648L, NA, NA, NA, NA, NA, NA, 257L, NA, NA, NA, 
    NA, NA, NA, 203L, NA, NA, NA, NA, NA, NA, 137L, NA, NA, NA, 
    NA, NA, NA, 78L, NA, NA, NA, NA, NA, NA, 82L, NA, NA, NA, 
    NA, NA, NA, 69L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA, 
    NA, NA, NA, 51L, NA, NA, NA, NA, NA, NA, 45L, NA, NA, NA, 
    NA, NA, NA, 63L, NA, NA, NA, NA, NA, NA, 55L, NA, NA, NA, 
    NA, NA, NA, 54L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA, 
    NA, NA, NA, 27L, NA, NA, NA, NA, NA, NA, 24L, NA, NA, NA, 
    NA, NA, NA, 12L, NA, NA, NA, NA, NA, NA, 10L, NA, NA, NA, 
    NA, NA, NA, 22L, NA, NA, NA, NA, NA, NA, 42L, NA, NA, NA, 
    NA, NA, NA, 32L, NA, NA, NA, NA, NA, NA, 52L, NA, NA, NA, 
    NA, NA, NA, 82L, NA, NA, NA, NA, NA, NA, 95L, NA, NA, NA, 
    NA, NA, NA, 91L, NA, NA, NA, NA, NA, NA, 104L, NA, NA, NA, 
    NA, NA, NA, 143L, NA, NA, NA, NA, NA, NA, 114L, NA, NA, NA, 
    NA, NA, NA, 100L, NA, NA, NA, NA, NA, NA, 83L, NA, NA, NA, 
    NA, NA, NA, 113L, NA, NA, NA, NA, NA, NA, 145L, NA, NA, NA, 
    NA, NA, NA, 175L, NA, NA, NA, NA, NA, NA, 222L, NA, NA, NA, 
    NA, NA, NA, 258L, NA, NA, NA, NA, NA, NA, 384L, NA, NA, NA, 
    NA, NA, NA, 755L, NA, NA, NA, NA, NA, NA, 976L, NA, NA, NA, 
    NA, NA, NA, 879L, NA, NA, NA, NA), no.consultations = c(NA, 
    NA, NA, 15093L, NA, NA, NA, NA, NA, NA, 20336L, NA, NA, NA, 
    NA, NA, NA, 20777L, NA, NA, NA, NA, NA, NA, 21108L, NA, NA, 
    NA, NA, NA, NA, 20967L, NA, NA, NA, NA, NA, NA, 20753L, NA, 
    NA, NA, NA, NA, NA, 18782L, NA, NA, NA, NA, NA, NA, 19778L, 
    NA, NA, NA, NA, NA, NA, 19223L, NA, NA, NA, NA, NA, NA, 21188L, 
    NA, NA, NA, NA, NA, NA, 22172L, NA, NA, NA, NA, NA, NA, 21965L, 
    NA, NA, NA, NA, NA, NA, 21768L, NA, NA, NA, NA, NA, NA, 21277L, 
    NA, NA, NA, NA, NA, NA, 16383L, NA, NA, NA, NA, NA, NA, 15337L, 
    NA, NA, NA, NA, NA, NA, 19179L, NA, NA, NA, NA, NA, NA, 18705L, 
    NA, NA, NA, NA, NA, NA, 19623L, NA, NA, NA, NA, NA, NA, 19363L, 
    NA, NA, NA, NA, NA, NA, 16257L, NA, NA, NA, NA, NA, NA, 19219L, 
    NA, NA, NA, NA, NA, NA, 17048L, NA, NA, NA, NA, NA, NA, 19231L, 
    NA, NA, NA, NA, NA, NA, 20023L, NA, NA, NA, NA, NA, NA, 19331L, 
    NA, NA, NA, NA, NA, NA, 18995L, NA, NA, NA, NA, NA, NA, 16571L, 
    NA, NA, NA, NA, NA, NA, 15010L, NA, NA, NA, NA, NA, NA, 13714L, 
    NA, NA, NA, NA, NA, NA, 10451L, NA, NA, NA, NA, NA, NA, 14216L, 
    NA, NA, NA, NA, NA, NA, 16800L, NA, NA, NA, NA, NA, NA, 18305L, 
    NA, NA, NA, NA, NA, NA, 18911L, NA, NA, NA, NA, NA, NA, 17812L, 
    NA, NA, NA, NA, NA, NA, 18665L, NA, NA, NA, NA, NA, NA, 18977L, 
    NA, NA, NA, NA, NA, NA, 19512L, NA, NA, NA, NA, NA, NA, 17424L, 
    NA, NA, NA, NA, NA, NA, 14464L, NA, NA, NA, NA, NA, NA, 16383L, 
    NA, NA, NA, NA, NA, NA, 19916L, NA, NA, NA, NA, NA, NA, 18255L, 
    NA, NA, NA, NA, NA, NA, 20113L, NA, NA, NA, NA, NA, NA, 20084L, 
    NA, NA, NA, NA, NA, NA, 20196L, NA, NA, NA, NA, NA, NA, 20184L, 
    NA, NA, NA, NA, NA, NA, 20261L, NA, NA, NA, NA, NA, NA, 22246L, 
    NA, NA, NA, NA, NA, NA, 23030L, NA, NA, NA, NA, NA, NA, 10487L, 
    NA, NA, NA, NA)), .Names = c("daily.ts", "wdayno", "month", 
"year", "yearday", "no.influ.cases", "no.consultations"), row.names = c(NA, 
-365L), class = "data.frame")

4
この質問では、鉱業でかなりよく研究されている、エリアツーポイント補間の 1次元バージョンを求めています。引用された要約は、地球統計学的手法が「コヒーレント(質量保存...)予測」をもたらすことを明示的に指摘しています。これらのアプローチは、@ Nick Coxによる異議を克服するものだと思います。
whuber

@whuber参照してくれてありがとう、私はこの種の問題が地球統計学でよく知られていることを知りませんでした。そのようなメソッドの実装Rまたは他の統計パッケージの実装を知っていますか(ArcGISにアクセスできません)?具体的に利用可能な実装がなければ、私はまだ立ち往生しています、私は恐れています。
COOLSerdash

2
geoRglmバリオグラフィーとサポートの変更(空間相関モデルの開発に必要)について十分に理解していれば、のコードを使用してこれを行うことができると思います。このマニュアルは、Springer Verlagによって、モデルベースの地球統計学、 Diggle&Ribeiro Jr.
whuber

3
グループ化されたデータの細分化は、人口統計学の一般的な手順です。検索用語は「スプレー補間」です。それは多くのバリエーションにあなたを導きます。単調曲線を保証する方法で5次スプラインを累積値に当てはめることにより、この方法とその変形はグループ化されたデータを効果的に再分割します。(1880年から使用されています。)総称は「形状補間」です。Rob Hyndmanは、とりわけこの主題について書いています。Smith、Hyndman、およびWood、人口統計変数のスプライン補間:単調性問題、 J。Popを参照してください。解像度 21 No. 1(2004)、95-98。
whuber

2
また、あなたの質問は、1つの次元のdasymetricマッピングとして見ることができます。これは、標準的な国勢調査の単位など、何らかの集計レベルで測定された数量の詳細なマップを作成する手順です。(少なくとも1936年までさかのぼることができます。ジョンK.ライト、人口密度のマッピング方法:ケープコッドを例として参照してください 地理的レビュー26:1(1936年1月)、pp 103-110。)最近のアプローチ(ややアドホックですが、短い参考文献があります)giscience.org/proceedings/abstracts/giscience2012_paper_179.pdfを参照してください。
whuber

回答:


8

私はR、平均(例えば、毎週、毎月など)を保持しながら、等間隔の点を線形にスプラインで補間する関数を作成することができました。これは、関数を使用na.approxし、na.splineよりzooパッケージと反復所望の特性を有するスプラインを算出します。アルゴリズムはこのペーパーで説明されます。

コードは次のとおりです。

interpol.consmean <- function(y, period=7, max.iter=100, tol=1e-4, plot=FALSE) {

  require(zoo)

  if( plot == TRUE ) {
    require(ggplot2)
  }

  y.temp.linear <- matrix(NA, ncol=length(y), nrow=max.iter+1)
  y.temp.linear[1, ] <- y

  y.temp.spline <- y.temp.linear

  y.temp.pred.spline <- matrix(NA, ncol=length(y), nrow=max.iter)
  y.temp.pred.linear <- matrix(NA, ncol=length(y), nrow=max.iter)

  ind.actual <- which(!is.na(y))

  if ( !all(diff(ind.actual)[1]== diff(ind.actual)) ) {
    stop("\"y\" must contain an evenly spaced time series")
  }

  partial <- ifelse((length(y) - ind.actual[length(ind.actual)]) < period/2,
                    TRUE, FALSE)

  for(k in 1:max.iter) {

    y.temp.pred.linear[k,] <- na.approx(y.temp.linear[k, ], na.rm=FALSE, rule=2)
    y.temp.pred.spline[k,] <- na.spline(y.temp.spline[k, ], method="fmm")

    interpol.means.linear <- rollapply(y.temp.pred.linear[k,], width=period, mean,
                                       by=period, align="left", partial=partial) 
    interpol.means.splines <- rollapply(y.temp.pred.spline[k,], width=period, mean,
                                        by=period, align="left", partial=partial) 

    resid.linear <- y.temp.linear[k, ][ ind.actual ] - interpol.means.linear
    resid.spline <- y.temp.spline[k, ][ ind.actual ] - interpol.means.splines

    if ( max(resid.linear, na.rm=TRUE) < tol & max(resid.spline, na.rm=TRUE) < tol ){
      cat("Converged after", k, "iterations with tolerance of", tol, sep=" ")
      break
    }

    y.temp.linear[k+1, ][!is.na(y.temp.linear[k, ])] <-  resid.linear
    y.temp.spline[k+1, ][!is.na(y.temp.spline[k, ])] <-  resid.spline

  }  

  interpol.linear.final <- colSums(y.temp.pred.linear, na.rm=TRUE)
  interpol.spline.final <- colSums(y.temp.pred.spline, na.rm=TRUE)

  if ( plot == TRUE ) {

    plot.frame <- data.frame(
      y=rep(y,2)/7,
      x=rep(1:length(y),2),
      inter.values=c(interpol.linear.final, interpol.spline.final)/7,
      method=c(rep("Linear", length(y)), rep("Spline", length(y)))
    )

    p <- ggplot(data=plot.frame, aes(x=x)) +
      geom_point(aes(y=y, x=x), size=4) +
      geom_line(aes(y=inter.values, color=method), size=1) +
      ylab("y") +
      xlab("x") +
      theme(axis.title.y =element_text(vjust=0.4, size=20, angle=90)) +
      theme(axis.title.x =element_text(vjust=0, size=20, angle=0)) +
      theme(axis.text.x =element_text(size=15, colour = "black")) +
      theme(axis.text.y =element_text(size=17, colour = "black")) +
      theme(panel.background =  element_rect(fill = "grey85", colour = NA),
            panel.grid.major =  element_line(colour = "white"),
            panel.grid.minor =  element_line(colour = "grey90", size = 0.25))+
      scale_color_manual(values=c("#377EB8", "#E41A1C"), 
                         name="Interpolation method",
                         breaks=c("Linear", "Spline"),
                         labels=c("Linear", "Spline")) +
      theme(legend.position="none") +
      theme(strip.text.x = element_text(size=16)) +
      facet_wrap(~ method)

    suppressWarnings(print(p))

  }
  list(linear=interpol.linear.final, spline=interpol.spline.final)
}

質問で与えられたサンプルのデータセットに関数を適用しましょう:

interpolations <- interpol.consmean(y=dat.frame$no.influ.cases, period=7,
                                    max.iter = 100, tol=1e-6, plot=TRUE)

補間

線形補間とスプライン補間の両方がうまくいくようです。毎週の平均が保存されているかどうかを確認しましょう(出力が切り捨てられています):

cbind(dat.frame$no.influ.cases[!is.na(dat.frame$no.influ.cases)],
      rollapply(interpolations$linear, 7, mean, by=7, align="left", partial=F))

      [,1] [,2]
 [1,]  168  168
 [2,]  199  199
 [3,]  214  214
 [4,]  230  230
 [5,]  267  267
 [6,]  373  373
 [7,]  387  387
 [8,]  443  443
 [9,]  579  579
[10,]  821  821
[11,] 1229 1229

1
そのための適切なパッケージを見つけ、メンテナにそれを含めたいかどうか尋ねる必要があります。
Spacedman

4

範囲の中間点で平均を通る直線は、必要な平均を持つ毎日の値を生成します。Nick Coxの「週数を日数で分割する」という最後のコメントは、gradient = 0の特別なケースです。

したがって、これを調整し、グラデーションを選択して、おそらく少しスムーズにすることができます。そのようなことを行う3つのR関数を次に示します。

interpwk <- function(x,y,delta){
  offset=-3:3
  yout=y+delta*offset
  xout=x+offset
  cbind(xout,yout)
}

get_delta <- function(x,y,pos){
  (y[pos+1]-y[pos-1])/(x[pos+1]-x[pos-1])
}

#' get slope from neighbours
interpall <- function(x,y,delta1,f=1){
  for(i in 2:(length(x)-1)){
    delta=get_delta(x,y,i)
    xyout=interpwk(x[i],y[i],delta/f)
    points(xyout)
  }
}

データに日単位を追加してから、プロットし、補間器をプロットします。

> data$day=data$week*7
> plot(data$day,data$no.influ.cases,type="l")
> interpall(data$day,data$no.influ.cases,f=1)

線形平均保存補間器

別の可能性は、週末に連続性を制限することですが、これにより、自由度が1つだけのシステムが得られます。つまり、最初のセクションの勾配によって完全に定義されます(他のセクションはすべて結合する必要があるため)。私はこれをコーディングしていません-あなたはやっています!

[少しみすぼらしいRコードのApols。プロットするのではなく、実際にポイントを返す必要があります]


+1、ありがとう。問題は、補間された値が滑らかではなく、週の間にかなり急なステップがあることです。基本的に必要なアプローチを正確に説明する論文を含む質問を編集しました。
COOLSerdash

ここでの目的は何ですか?なぜインフルエンザの症例はスムーズに変わると思いますか?補間によりこれらのデータに構造を追加すればするほど、導入された構造をモデル化段階で解く必要があります。5月19日の「毎週のデータを毎日のデータに詰め込むと、依存性が導入され、モデルのフィッティングと評価を台無しにするほど過度に楽観的な自由度の問題が生じるだけです」という私のコメントに答えたとは思いません。
ニックコックス

しかし、平均への制約は間違っています。ここに表示される平均値はサンプルの平均値であり、何らかの形で統計的な変動の影響を受けます。モデルを想起し、平均を期待値とする補間器を使用してから、毎日のデータを複数回代入し、分析を100回以上実行して、この不確実性が結論にどのように影響するかを見つけます。
Spacedman

1
@Spacedman(質問へのコメントで)私が参照した地球統計APIメソッドは、バリオグラムナゲットパラメーターのゼロ以外のコンポーネントを使用して、aplombによる(非常に有効な)異論を処理します。地球統計学的条件付きシミュレーションは、参照する複数の代入を実行する制御された方法です。
whuber

2
絶対に。geoRglmのDiggle&Ribeiroマニュアルの実行例(共変量としての沼地などに近接したガンビアのマラリア症例)とほぼ同じ1次元の状況があるように見えます。主な問題はサポートの変更を処理することですが、それは実際には予測には影響しません。主にバリオグラムの推定に影響します。ncbi.nlm.nih.gov/pmc/articles/PMC2995922を参照してください。いくつかの理論と同様の例(病気の場合の「二項クリギング」)。
whuber

3

n

(データがカウントではなく測定値であった場合、私はディリクレモデルを介して比率をモデル化することに傾いていましたが、それは少し複雑です。)

日数が常に同じではないという事実は、それが何であるかを知っている限り、特定の問題ではないはずです-オフセットを使用して同じ「レベル」に置く限り。


1
間違っている場合は修正してください。しかし、これには逆の質問があると思います。毎日のカウントをスムーズにする方法ではありません。週ごとのデータから日ごとのカウントを推測する方法です。(おそらく、ポスターには温度などの何か別の日次データがあります。)それとは別に、この多項式またはディリクレはどうですか?私にはポアソンのように見えます。
ニックコックス

@NickCoxあなたは絶対に正しいです、明確化のおかげで:私は毎週のデータがあり、毎日のデータがあるので毎日のデータが欲しいです(すなわち、気象変数、死亡率、大気汚染など)。
COOLSerdash

3
質問に対する私自身の見解は、なぜあなたがこれをしたいのかを尋ねることです。上記のように、毎日のデータがあり、すべてを同じ基準で取得する必要があると思います。その場合は、毎日のデータを数週間にわたって最小、平均、中央値、最大、または科学的に意味のあるものに減らすことを検討してください。毎週のデータを毎日のデータに詰め込むと、依存関係が導入され、モデルのフィッティングと評価を損なう過度に楽観的な自由度の問題が発生します。
ニックコックス

@Nick Coxは絶対に「推測」しますが、与えられた情報では、OPが望んでいたもののようです。
Glen_b

2
別の保守的なアプローチは、週ごとのカウントを日数で割るだけです。実際のプロセスはそれよりもスムーズになるという前提があることは知っていますが、平均は保持されます。
ニックコックス

3

別の回答として追加のコメントをまとめます。

このプロジェクトの構造が明確になるにはしばらく時間がかかりました。インフルエンザはいくつかの共変量として明らかになっていることを考えると、あなたがそれで何をするかはそれほど重要ではないか、少なくとも私の以前のコメントのいくつかで表明された懐疑に値しないようです。他のすべては毎日行われるので、他のすべてを数週間に減らすと、詳細が無駄になりすぎます。

質問の元の焦点は、週平均が週平均を保持するという(極端な)答えである週平均を保持する補間に残ります。当然のことながら、これは魅力的でも現実的でもないように思えるので、@ Spacedmanが提案する他の補間法や魅力的な補間法がより魅力的だと思われます。(それが一時的なフレーバーによる補完であろうと、確率論的なフレーバーが追加された補間であろうと、はっきりしません。)

さらに2つの具体的な考え:

  • 週単位の値(日数で除算)を取得し、加重平均で平滑化すると、実際には平均値を適切な近似値に保つことができます。

  • インフルエンザの症例はカウントであるため、ルートまたはログカウントを平滑化してから逆変換することは、単にカウントを平滑化するよりもうまくいく可能性があります。

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.