以下の時系列データを季節性、トレンド、残差成分に分解したいと思います。データは、商業ビルの1時間ごとの冷却エネルギープロファイルです。
TotalCoolingForDecompose.ts <- ts(TotalCoolingForDecompose, start=c(2012,3,18), freq=8765.81)
plot(TotalCoolingForDecompose.ts)
したがって、次のアドバイスに基づいて、日ごとと週ごとに明らかな季節的影響があります。複数の季節的要素を持つ時系列を分解する方法 、私tbats
はforecast
パッケージの関数を使用しました:
TotalCooling.tbats <- tbats(TotalCoolingForDecompose.ts, seasonal.periods=c(24,168), use.trend=TRUE, use.parallel=TRUE)
plot(TotalCooling.tbats)
その結果:
このモデルのlevel
およびslope
コンポーネントは何を説明していますか?このパッケージで参照されている論文(De Livera、Hyndman、Snyder(JASA、2011))に似たtrend
およびremainder
コンポーネントを入手するにはどうすればよいですか?