ライブラリlanguageRは、lmerを使用して混合効果回帰モデルの適合における固定効果のMCMC有意性テストを実行するメソッド(pvals.fnc)を提供します。ただし、lmerモデルにランダムな勾配が含まれている場合、pvals.fncはエラーを返します。
そのようなモデルのMCMC仮説検定を行う方法はありますか?
もしそうなら、どのように?(回答を受け入れるには、Rで有効な例を使用する必要があります)そうでない場合、方法がない理由は概念的/計算上の理由がありますか?
この質問はこれに関連している可能性があります、そこにある内容を確実に理解できませんでした。
編集1:pvals.fnc()はlme4モデルではまだ「何か」を行うが、ランダムな勾配モデルでは何もしないことを示す概念実証。
library(lme4)
library(languageR)
#the example from pvals.fnc
data(primingHeid)
# remove extreme outliers
primingHeid = primingHeid[primingHeid$RT < 7.1,]
# fit mixed-effects model
primingHeid.lmer = lmer(RT ~ RTtoPrime * ResponseToPrime + Condition + (1|Subject) + (1|Word), data = primingHeid)
mcmc = pvals.fnc(primingHeid.lmer, nsim=10000, withMCMC=TRUE)
#Subjects are in both conditions...
table(primingHeid$Subject,primingHeid$Condition)
#So I can fit a model that has a random slope of condition by participant
primingHeid.lmer.rs = lmer(RT ~ RTtoPrime * ResponseToPrime + Condition + (1+Condition|Subject) + (1|Word), data = primingHeid)
#However pvals.fnc fails here...
mcmc.rs = pvals.fnc(primingHeid.lmer.rs)
pvals.fnc(primingHeid.lmer.rs)のエラー:ランダム相関パラメーターを持つモデルのlme4_0.999375でMCMCサンプリングはまだ実装されていません
追加の質問:pvals.fncは、ランダムインターセプトモデルで期待どおりに動作しますか?出力を信頼する必要がありますか?