世界にドッジボール選手が80人いると想像してください。彼らはそれぞれ、他の79人のプレイヤーとランダムに何千ものドッジボールゲームをプレイしました。これはチームのない世界です(たとえば、すべてのプレイヤーは各ゲームでどちらかのチームでドラフトされる可能性があります)。各プレイヤーの以前の勝率を知っています(たとえば、1つはすべての以前のゲームの46%を獲得し、もう1つは彼の以前のゲームの56%を獲得しました)。試合が予定されていて、各チームで誰がプレーしているのかがわかります。以前の勝率も知っています。
チームの構成に基づいて各チームが勝つ確率を計算する最良の方法は何ですか?
比較的高度な計算(ロジスティック回帰など)が必要な場合は、詳細をいくつか教えてください。私はSPSSにかなり精通していますが、フォローアップの質問をする必要はありません。
さらに、アーカイブデータを使用してメソッドの精度をどのように調べることができますか?ほとんどのプレイヤーは40〜60%程度ホバリングしているので、はっきりとは分からないでしょうが、それでもです。
具体的には、チームAが勝つ確率はどのくらいですか?
A-以前の勝率が52%、54%、56%、58%、60%の個人で構成B-以前の勝率が48%、55%、56%、58%、60%の個人で構成
(これは、説明のための単なるランダムな例です。2つの非常に良いチームです。)
編集:非常に単純なアルゴリズムから始めて、それがどのように機能するかを見る方法はありますか?各チームのパーセンテージを単純に合計し、パーセンテージが最も高いチームが勝つと予測することができます。もちろん、分類は正確ではありませんが、数千件以上のアーカイブされたゲームを偶然よりも予測できるかどうかを確認できました。
AvgTeam1WinP
/ AvgTeam2WinP
?それteam1
は勝つオッズをもたらすべきteam2
です。