現在、カテゴリ変数/因子変数のみを独立変数として持つ回帰モデルに取り組んでいます。私の従属変数はロジット変換比です。
Rは、「ファクター」タイプであるダミーをコーディングする方法を自動的に認識するため、Rで通常の回帰を実行するだけでかなり簡単です。ただし、このタイプのコーディングでは、各変数の1つのカテゴリがベースラインとして使用されるため、解釈が難しくなります。
私の教授は、代わりにエフェクトコーディング(-1または1)を使用するように言っています。これは、インターセプトに大平均を使用することを意味するためです。
誰もそれを処理する方法を知っていますか?
今まで私は試しました:
gm <- mean(tapply(ds$ln.crea, ds$month, mean))
model <- lm(ln.crea ~ month + month*month + year + year*year, data = ds, contrasts = list(gm = contr.sum))
Call:
lm(formula = ln.crea ~ month + month * month + year + year *
year, data = ds, contrasts = list(gm = contr.sum))
Residuals:
Min 1Q Median 3Q Max
-0.89483 -0.19239 -0.03651 0.14955 0.89671
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.244493 0.204502 -15.865 <2e-16 ***
monthFeb -0.124035 0.144604 -0.858 0.3928
monthMar -0.365223 0.144604 -2.526 0.0129 *
monthApr -0.240314 0.144604 -1.662 0.0993 .
monthMay -0.109138 0.144604 -0.755 0.4520
monthJun -0.350185 0.144604 -2.422 0.0170 *
monthJul 0.050518 0.144604 0.349 0.7275
monthAug -0.206436 0.144604 -1.428 0.1562
monthSep -0.134197 0.142327 -0.943 0.3478
monthOct -0.178182 0.142327 -1.252 0.2132
monthNov -0.119126 0.142327 -0.837 0.4044
monthDec -0.147681 0.142327 -1.038 0.3017
year1999 0.482988 0.200196 2.413 0.0174 *
year2000 -0.018540 0.200196 -0.093 0.9264
year2001 -0.166511 0.200196 -0.832 0.4073
year2002 -0.056698 0.200196 -0.283 0.7775
year2003 -0.173219 0.200196 -0.865 0.3887
year2004 0.013831 0.200196 0.069 0.9450
year2005 0.007362 0.200196 0.037 0.9707
year2006 -0.281472 0.200196 -1.406 0.1625
year2007 -0.266659 0.200196 -1.332 0.1855
year2008 -0.248883 0.200196 -1.243 0.2164
year2009 -0.153083 0.200196 -0.765 0.4461
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3391 on 113 degrees of freedom
Multiple R-squared: 0.3626, Adjusted R-squared: 0.2385
F-statistic: 2.922 on 22 and 113 DF, p-value: 0.0001131