回答:
もしは、(独立下)、Y = Σ X I〜G A M M A (nは、1 / λ )ので、yはガンマ分布する(参照あるウィキペディア)。したがって、必要なのはE [ y 2 ]だけです。以降V R [ Y ] = E [ Y 2 ] - E、我々は知っている E [ Y 2 ] = V R [ Y ] + E [ Y ] 2。したがって、 E [ Y 2 ] = N / λ 2 + N 2 / λ 2 = N (1 + N )/ λ 2(参照ウィキペディアガンマ分布の期待値と分散のために)。
上記の答えは非常に素晴らしく、質問に完全に答えますが、代わりに、予想される合計の二乗の一般式を提供し、ここで言及した特定の例に適用します。
定数のいずれかのセットについて1、。。。、nはそれが事実であります
これはtrueです分配的性質、あなたが計算するとき、あなたがやっているかを考えたときに明確になる手で。
したがって、ランダム変数 …のサンプルに対して。。。、X n、分布に関係なく、
これらの期待が存在する場合。
for each . By independence, for , we have
There are of these terms in the sum. When , we have
and there are of these term in the sum. Therefore, using the formula above,
is your answer.
This problem is just a special case of the much more general problem of 'moments of moments' which are usually defined in terms of power sum notation. In particular, in power sum notation:
Then, irrespective of the distribution, the original poster seeks (provided the moments exist). Since the expectations operator is just the 1st Raw Moment, the solution is given in the mathStatica software by:
[ The '___ToRaw' means that we want the solution presented in terms of raw moments of the population (rather than say central moments or cumulants). ]
Finally, if ~ Exponential() with pdf :
f = Exp[-x/λ]/λ; domain[f] = {x, 0, ∞} && {λ > 0};
then we can replace the moments in the general solution sol
with the actual values for an Exponential random variable, like so:
All done.
P.S. The reason the other solutions posted here yield an answer with in the denominator rather than the numerator is, of course, because they are using a different parameterisation of the Exponential distribution. Since the OP didn't state which version he was using, I decided to use the standard distribution theory textbook definition Johnson Kotz et al … just to balance things out :)