私は、繰り返されるバイナリ結果を使用して、イベント発生までの時間を分析しようとしています。イベント発生までの時間を日数で測定するとしますが、ここでは時間を週単位で離散化するとします。繰り返しバイナリ結果を使用して、カプラン・マイヤー推定量を近似したい(ただし、共変量は可能)。これは遠回りの方法のように見えますが、これが通常の結果や繰り返し発生するイベントにどのように拡張されるかを調査しています。
3週間で打ち切られた誰かが000、4wで打ち切られた誰かが0000、5wで失敗した対象が0000111111111111 ...のようなバイナリシーケンスを作成した場合(1は、最後の対象があった点まで拡張されます)研究で続いています)、1の週固有の比率を計算すると、通常の累積発生率を得ることができます(変数の打ち切り時間に到達するまで、これは概算のみですが、カプランマイヤー累積発生率推定と等しくありません)。
上記のように時間を離散化する代わりに、時間内のスプラインを使用する代わりに、GEEを使用してバイナリロジスティックモデルを使用して、繰り返されたバイナリの観測を近似できます。クラスターサンドイッチ共分散推定器は、適切に機能します。しかし、混合効果モデルを使用して、より正確な推論を得たいと思います。問題は、最初の1の後の1が冗長であることです。だれでも、変量効果を指定する方法、または標準誤差が収縮しないように冗長性を考慮に入れるモデルを指定する方法を知っていますか?
エフロンはリスクセットの条件付き確率を推定するためにロジスティックモデルを使用していたため、この設定はエフロンとは異なります。無条件の確率を推定しています。
GLMMadaptive
パッケージは、より一般的な設定では素晴らしいものに見えます。