私は両方lm
との間でlmer
繰り返しの測定(2x2x2)でいくつかの相互作用テストを再現しようとしています。両方の方法を比較したいのは、繰り返し測定のSPSSのGLMがlm
ここに示したアプローチとまったく同じ結果をもたらすため、最後にSPSSとR-lmerを比較したいためです。これまでのところ、私はこれらの相互作用の一部を(密接に)再現することしかできませんでした。
私のポイントをよりよく説明するためのスクリプトを以下に示します。
library(data.table)
library(tidyr)
library(lmerTest)
library(MASS)
set.seed(1)
N <- 100 # number of subjects
sigma <- 1 # popuplation sd
rho <- .6 # correlation between variables
# X1: a a a a b b b b
# X2: a a b b a a b b
# X3: a b a b a b a b
mu <- c(5, 3, 3, 5, 3, 5, 5, 3) # means
# Simulate the data
sigma.mat <- rep(sigma, length(mu))
S <- matrix(sigma.mat, ncol = length(sigma.mat), nrow = length(sigma.mat))
Sigma <- t(S) * S * rho
diag(Sigma) <- sigma**2
X <- data.table( mvrnorm(N, mu, Sigma) )
setnames(X, names(X), c("aaa", "aab", "aba", "abb", "baa", "bab", "bba", "bbb"))
X[, id := 1:.N]
# Long format
XL <- data.table( gather(X, key, Y, aaa:bbb) )
XL[, X1 := substr(key, 1, 1)]
XL[, X2 := substr(key, 2, 2)]
XL[, X3 := substr(key, 3, 3)]
# Recode long format (a = +1; b = -1)
XL[, X1c := ifelse(X1 == "a", +1, -1)]
XL[, X2c := ifelse(X2 == "a", +1, -1)]
XL[, X3c := ifelse(X3 == "a", +1, -1)]
### Composite scores to be used with lm
# X2:X3 2-way interaction (for half the data; i.e. when X1 == "a")
X[, X1a_X2.X3 := (aaa - aab) - (aba - abb)]
# X2:X3 2-way interaction (for all the data)
X[, aa := (aaa + baa) / 2]
X[, ab := (aab + bab) / 2]
X[, ba := (aba + bba) / 2]
X[, bb := (abb + bbb) / 2]
X[, X2.X3 := (aa - ab) - (ba - bb)]
# X1:X2:X3 3-way interaction (for all the data)
X[, X1.X2.X3 := ( (aaa - aab) - (aba - abb) ) - ( (baa - bab) - (bba - bbb) )]
### Fit models
# X2:X3 2-way interaction (for half the data; i.e. when X1 == "a")
summary( lm(X1a_X2.X3 ~ 1, X) ) # t = 34.13303
summary( lmer(Y ~ X2c*X3c + (X2c+X3c|id), XL[X1 == "a"]) ) # t = 34.132846 close match
summary( lmer(Y ~ X2c*X3c + (X2c+X3c||id), XL[X1 == "a"]) ) # t = 34.134624 close match
# X2:X3 2-way interaction (for all the data)
summary( lm(X2.X3 ~ 1, X) ) # t = 0.3075025
summary( lmer(Y ~ X2c*X3c + (X2c+X3c|id), XL) ) # t = 0.1641932
summary( lmer(Y ~ X2c*X3c + (X2c+X3c||id), XL) ) # t = 0.1640710
summary( lmer(Y ~ X2c*X3c + (X2c*X3c|id), XL) ) # t = 0.1641765
anova( lmer(Y ~ X2c*X3c + (X2c*X3c|id), XL), ddf = "Kenward-Roger" ) # t = 0.1643168
summary( lmer(Y ~ X2c*X3c + (X2c*X3c|id), XL, REML = FALSE) ) # t = 0.1645303
summary( lmer(Y ~ X2c*X3c + (X2c*X3c||id), XL) ) # t = 0.1640704
# X1:X2:X3 3-way interaction (for all the data)
summary( lm(X1.X2.X3 ~ 1, X) ) # t = 46.50177
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c|id), XL) ) # t = 49.0317599
anova( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c|id), XL), ddf = "Kenward-Roger" ) # t = 49.03176
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c|id), XL, REML = FALSE) ) # t = 49.2677606
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c||id), XL) ) # t = 46.5193774 close match
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c|id), XL) ) # unidentifiable
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c|id), XL,
control = lmerControl(check.nobs.vs.nRE="ignore")) ) # t = 46.5148684 close match
上記からわかるように、lm
推定値はどれも正確に一致していませんlmer
。結果の一部は非常によく似ており、数値/計算上の理由により、異なる場合があります。両方の推定方法のギャップは、にとって特に大きいですX2:X3 2-way interaction (for all the data)
。
私の質問は、両方の方法でまったく同じ結果を得る方法があるかどうか、および分析を実行する正しい方法があるかどうかですlmer
(ただし、lm
結果と一致しない場合があります)。
ボーナス:
t value
3方向の相互作用に関連付けられたは、ファクターのコーディング方法に影響されることに気付きました。これは私には非常に奇妙に見えます。
summary( lmer(Y ~ X1*X2*X3 + (X1*X2*X3 - X1:X2:X3||id), XL) ) # t = 48.36
summary( lmer(Y ~ X1c*X2c*X3c + (X1c*X2c*X3c - X1c:X2c:X3c||id), XL) ) # t = 56.52
1
+1面白いように見えますが、ここで何をしているのかわかりません:)これらのlmとlmerの呼び出しで同じ係数が得られる理由を、単語または数学で説明できますか そして、この全体の運動の背後にある論理は何ですか?
—
アメーバはモニカを復活させる
@amoebaこの投稿の目的を明確にするために投稿を更新しました。基本的に、SPSS(
—
マット
lm
モデルに変換できる)の結果をで再現し、この種のデータの正しい分析をlmer
知りたいです。 lmer
完全なデータの双方向相互作用の場合に大きな不一致が生じる理由は、パラメーターの組み合わせごとに2つのデータポイントがあるためです。直感は、混合モデルの有効なサンプルサイズはの2倍小さいということ
—
アメーバはモニカを復活させる
lm
です。t統計がでおおよそ2分の1になっているのはそのためだと思いlmer
ます。おそらく、2x2x2や複雑な相互作用を気にすることなく、より単純な2x2設計を使用して主な効果を確認することで、同じ現象を観察できるでしょう。