推定したいいくつかのモデルパラメーター与えられた場合、データ確率に対する尤度関数があります。パラメータの平坦な事前分布を仮定すると、尤度は事後確率に比例します。MCMCメソッドを使用して、この確率をサンプリングします。
結果の収束チェーンを見ると、最尤パラメーターが事後分布と一致していないことがわかります。例えば、パラメータの1つに取り残さ事後確率分布があるかもしれないの値が、最尤点である、MCMCサンプラーが通過するほぼ最大値です。
これは実例であり、実際の結果ではありません。実際の分布ははるかに複雑ですが、一部のMLパラメーターは、それぞれの事後分布に同様にありそうもないp値を持っています。一部のパラメーターが制限されていることに注意してください(例:); 境界内では、事前分布は常に均一です。
私の質問は:
そのような逸脱自体が問題なのでしょうか?明らかに、MLパラメーターが周辺化された事後分布のそれぞれの最大値と正確に一致することは期待していませんが、直感的には、それらが尾の奥にあるはずがないように感じます。この偏差は結果を自動的に無効にしますか?
これが必ずしも問題であるかどうかに関係なく、データ分析のある段階で特定の病理の兆候である可能性がありますか?たとえば、このような偏差が不適切に収束したチェーン、不適切なモデル、またはパラメータの過度に厳しい境界によって引き起こされる可能性があるかどうかについて、一般的な説明をすることはできますか?