ARIMA(1,1,1)-GARCH(1,1)モデルを、数年にわたって1分間隔でサンプリングされたAUD / USD為替レートログ価格の時系列に適合させ、2つ以上のモデルを推定する100万のデータポイント。データセットはこちらから入手できます。明確にするために、これはログ価格の1次積分により、ログのリターンに適合したARMA-GARCHモデルでした。元のAUD / USD時系列は次のようになります。
次に、当てはめたモデルに基づいて時系列をシミュレートしようとしましたが、次のようになりました。
シミュレーションされた時系列が元の時系列と異なることを期待し、望んでいますが、それほど大きな違いがあるとは思っていませんでした。本質的に、私はシミュレートされたシリーズがオリジナルのように動作するか、概して見たいと思っています。
これは、モデルの推定とシリーズのシミュレーションに使用したRコードです。
library(rugarch)
rows <- nrow(data)
data <- (log(data[2:rows,])-log(data[1:(rows-1),]))
spec <- ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1, 1)), mean.model = list(armaOrder = c(1, 1), include.mean = TRUE), distribution.model = "std")
fit <- ugarchfit(spec = spec, data = data, solver = "hybrid")
sim <- ugarchsim(fit, n.sim = rows)
prices <- exp(diffinv(fitted(sim)))
plot(seq(1, nrow(prices), 1), prices, type="l")
そして、これは推定出力です:
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(1,0,1)
Distribution : std
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.000000 0.000000 -1.755016 0.079257
ar1 -0.009243 0.035624 -0.259456 0.795283
ma1 -0.010114 0.036277 -0.278786 0.780409
omega 0.000000 0.000000 0.011062 0.991174
alpha1 0.050000 0.000045 1099.877416 0.000000
beta1 0.900000 0.000207 4341.655345 0.000000
shape 4.000000 0.003722 1074.724738 0.000000
Robust Standard Errors:
Estimate Std. Error t value Pr(>|t|)
mu 0.000000 0.000002 -0.048475 0.961338
ar1 -0.009243 0.493738 -0.018720 0.985064
ma1 -0.010114 0.498011 -0.020308 0.983798
omega 0.000000 0.000010 0.000004 0.999997
alpha1 0.050000 0.159015 0.314436 0.753190
beta1 0.900000 0.456020 1.973598 0.048427
shape 4.000000 2.460678 1.625568 0.104042
LogLikelihood : 16340000
モデリングとシミュレーションを改善する方法に関するガイダンス、または私が作成した可能性のあるエラーへの洞察に大いに感謝します。シミュレーションの試行では、モデルの残差がノイズ項として使用されていないように見えますが、それを組み込む方法はわかりません。
ugarchspec()
およびugarchsim()
関数が存在する場所)は含まれていません。ここで質問するときはいつでもコードが再現可能であることを確認してください。コードは「人々があなたを助けるのを助けます」。