次数2の多項式カーネルでC-SVCモードでlibsvmを使用しており、複数のSVMをトレーニングする必要があります。各トレーニングセットには、10個の機能と5000個のベクトルがあります。トレーニング中に、トレーニングするほとんどのSVMでこの警告が表示されます。
WARNING: reaching max number of iterations
optimization finished, #iter = 10000000
誰かがこの警告が何を意味するのか、おそらく、それを回避する方法を説明してもらえますか?
また、ガンマとC(正則化)の最適な選択を決定するために、モデルに相互検証を適用したいと思います。私の計画は、これらの10個の値のすべての組み合わせを試すことです:0.00001、0.0001、0.001、0.01、0.1、1、10、100、1000、10000の両方のパラメーターで、交差検証中にどの組み合わせが最高の精度をもたらすかを確認します。これで十分ですか?この間隔でより多くの値を使用する必要がありますか、それともより広い間隔を選択する必要がありますか?