私の質問:ランダムフォレストは、ツリーレベルではなく各ツリー内のノードレベルで分割するために、フィーチャのランダムサブセットを考慮するのはなぜですか?
背景:これは歴史の質問です。ティン・カム・ホーが公開され、この論文をランダムにそれぞれ成長させるために使用する機能のサブセットを選択することにより、「意思決定の森」を構築する上で木を 2001年に、後に1998数年で、レオ・ブレイマンは彼の独創性に富んランダムフォレストの公表論文特徴サブセットがランダムであるが、各ツリーではなく、各ツリー内の各ノードで選択されます。ブライマンはHoを引用しましたが、ツリーレベルからノードレベルのランダムな特徴選択への移行については特に説明しませんでした。
この開発の具体的な動機は何だと思います。ツリーレベルでフィーチャサブセットを選択すると、ツリーの目的の非相関化が依然として達成されるようです。
私の理論:これは他の場所で明確に表現されていませんが、ランダムなサブスペース法は、特徴の重要性の推定値を取得するという点では効率が低いようです。変数の重要度の推定値を取得するために、各ツリーについて、特徴が1つずつランダムに並べ替えられ、誤判別の増加またはアウトオブバッグ観測のエラーの増加が記録されます。このランダムな順列から生じる誤分類またはエラーの増加が大きい変数は、最も重要です。
ランダム部分空間法を使用する場合、ツリーごとに、特徴のうちだけを考慮します。すべての予測子を一度でも考慮するには、いくつかの木が必要になる場合があります。我々は異なるサブセット考える一方、の特徴各ノードで、私たちは私たちにフィーチャー重要性のより堅牢な見積もりを与え、少数の木の後に、各機能に多くの時間を考慮します。
これまで見てきたこと:これまでのところ、私はブライマンの論文とホーの論文を読み、決定的な答えを見つけることなく方法の比較のために広範なオンライン検索を行いました。同様の質問が以前に聞かれたことに注意してください。この質問は、考えられる解決策に向けた私の推測/作業を含めることで、さらに先へと進みます。答え、関連する引用、または2つのアプローチを比較するシミュレーション研究に興味があります。予定されていない場合は、2つの方法を比較して独自のシミュレーションを実行する予定です。