「エントロピー」は、確率分布の「情報」の程度を大まかに捉えたものです。
離散分布の場合、より正確な解釈があります。離散確率変数のエントロピーは、確率変数の結果を転送するために必要な予想ビット数の下限です。
しかし、連続確率変数の場合、結果の数は無数にあります。そのため、ビットの有限文字列で発生した正確な結果を転送し始めることさえできません。
連続変数のエントロピーの同等の解釈は何ですか?
1
確率分布における「情報の程度」の定義はありますか?
—
kjetil b halvorsen
@kjetilbhalverson、これでどこへ行くのか分からないの?質問はかなり明確ではありませんか?
—
user56834
@COOLSerdash完璧です。これらの2つにリンクする答えを出していただけませんか。ポイントをお伝えします。
—
user56834
@ Programmer2134私は本当に感謝していますが、あまりコンテキストがない(ここではお勧めしません)リンクを投稿して、ポイントを獲得するだけでは満足できません。申し訳ありません。
—
COOLSerdash