質問: 10次元のMCMCチェーンを使用して、ドローのマトリックスを渡す準備ができているとしましょう。特に複数のモードに関心があります。
バックグラウンド:私自身は計算に精通している統計学者だと思いますが、同僚がこの質問をしたとき、私は合理的な答えを出すことができなかったことを恥ずかしく思いました。主な懸念事項は、複数のモードが表示される可能性があることですが、10次元のうち少なくとも8次元程度が考慮される場合に限られます。私の最初の考えは、カーネル密度推定を使用することでしたが、Rを検索しても、3次元を超える問題については何も約束されませんでした。同僚は10次元のアドホックビニング戦略を提案し、最大値を検索しましたが、帯域幅が重大なスパース性の問題を引き起こすか、複数のモードを識別するための解像度が不足する可能性があるのではないかと心配しています。とは言っても、自動化された帯域幅の提案、10カーネル密度推定器へのリンクなど、知っていることなら何でも喜んで受け入れます。
懸念事項:
ディストリビューションはかなり歪んでいると思われます。したがって、事後平均ではなく事後モードを識別したいとします。
いくつかの事後モードが存在する可能性があることを懸念しています。
可能であれば、Rベースの提案をお勧めします。しかし、実装するのが信じられないほど難しくない限り、どのようなアルゴリズムでも機能します。最初から自動化された帯域幅選択を備えたNdカーネル密度推定器を実装したくないと思います。