WinBUGSで特定の変数の予測を取得する方法は?


10

私はWinBUGSの新しいユーザーであり、あなたの助けに1つの質問があります。次のコードを実行した後、私はのパラメータを持っbeta0beta4(統計情報、密度)が、私は最後の値の予測を取得する方法がわからないh私がするように設定、NAコード内でモデル化することを。

誰かが私にヒントを与えることができますか?何かアドバイスをいただければ幸いです。


model {
for(i in 1: N) {
CF01[i] ~ dnorm(0, 20)
CF02[i]  ~ dnorm(0, 1)
h[i] ~ dpois (lambda [i])
log(lambda [i]) <- beta0 + beta1*CF03[i] + beta2*CF02[i] + beta3*CF01[i] + beta4*IND[i]
}
beta0 ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)
beta2 ~ dnorm(0.0, 1.0E-6)
beta3 ~ dnorm(0.0, 1.0E-6)
beta4  <- log(p)
p ~ dunif(lower, upper)
}

INITS
list(beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0, p = 0.9)

DATA(LIST)
list(N = 154, lower = 0.80, upper = 0.95,

h = c(1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 3, 0, 0, 0, 2, 0, 1, 0, 4, 2,
3, 0, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 1, 0, 1, 3, 3, 3, 1, 0, 1,
0, 5, 2, 1, 2, 1, 3, 3, 1, 1, 0, 2, 2, 0, 3, 0, 0, 3, 2, 2, 2,
1, 0, 3, 3, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 5,
0, 2, 1, 0, 2, 1, 2, 2, 2, 0, 3, 2, 1, 3, 3, 3, 3, 0, 1, 3, 3,
3, 1, 0, 0, 1, 2, 1, 0, 1, 4, 1, 1, 1, 1, 2, 1, 3, 0, 0, 1, 1,
1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 1, 1, 1, 3, 0, 1, 1, 1, 0, 2, 1,
0, 3, 3, 0, 0, 1, 2, 6, NA),

CF03 = c(-1.575, 0.170, -1.040, -0.010, -0.750,
0.665, -0.250, 0.145, -0.345, -1.915, -1.515,
0.215, -1.040, -0.035, 0.805, -0.860, -1.775,
1.725, -1.345, 1.055, -1.935, -0.160, -0.075,
-1.305, 1.175, 0.130, -1.025, -0.630, 0.065,
-0.665, 0.415, -0.660, -1.145, 0.165, 0.955,
-0.920, 0.250, -0.365, 0.750, 0.045, -2.760,
-0.520, -0.095, 0.700, 0.155, -0.580, -0.970,
-0.685, -0.640, -0.900, -0.250, -1.355, -1.330,
0.440, -1.505, -1.715, -0.330, 1.375, -1.135,
-1.285, 0.605, 0.360, 0.705, 1.380, -2.385, -1.875,
-0.390, 0.770, 1.605, -0.430, -1.120, 1.575, 0.440,
-1.320, -0.540, -1.490, -1.815, -2.395, 0.305,
0.735, -0.790, -1.070, -1.085, -0.540, -0.935,
-0.790, 1.400, 0.310, -1.150, -0.725, -0.150,
-0.640, 2.040, -1.180, -0.235, -0.070, -0.500,
-0.750, -1.450, -0.235, -1.635, -0.460, -1.855,
-0.925, 0.075, 2.900, -0.820, -0.170, -0.355,
-0.170, 0.595, 0.655, 0.070, 0.330, 0.395, 1.165,
0.750, -0.275, -0.700, 0.880, -0.970, 1.155, 0.600,
-0.075, -1.120, 1.480, -1.255, 0.255, 0.725,
-1.230, -0.760, -0.380, -0.015, -1.005, -1.605,
0.435, -0.695, -1.995, 0.315, -0.385, -0.175,
-0.470, -1.215, 0.780, -1.860, -0.035, -2.700,
-1.055, 1.210, 0.600, -0.710, 0.425, 0.155, -0.525,
-0.565),

CF02 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.38, 0.06, -0.94,
-0.02, -0.28, -0.78, -0.95, 2.33, 1.43, 1.24, 1.26,
-0.75, -1.5, -2.09, 1.01, -0.05, 2.48, 2.48, 0.46,
0.46, -0.2, -1.11, 0.52, -0.37, 0.58, 0.86, 0.59,
-0.12, -1.33, 1.4, -1.84, -1.4, -0.76, -0.23,
-1.78, -1.43, 1.2, 0.32, 1.87, 0.43, -1.71, -0.54,
-1.25, -1.01, -1.98, 0.52, -1.07, -0.44, -0.24,
-1.31, -2.14, -0.43, 2.47, -0.09, -1.32, -0.3,
-0.99, 1.1, 0.41, 1.01, -0.19, 0.45, -0.07, -1.41,
0.87, 0.68, 1.61, 0.36, -1.06, -0.44, -0.16, 0.72,
-0.69, -0.94, 0.11, 1.25, 0.33, -0.05, 0.87, -0.37,
-0.2, -2.22, 0.26, -0.53, -1.59, 0.04, 0.16, -2.66,
-0.21, -0.92, 0.25, -1.36, -1.62, 0.61, -0.2, 0,
1.14, 0.27, -0.64, 2.29, -0.56, -0.59, 0.44, -0.05,
0.56, 0.71, 0.32, -0.38, 0.01, -1.62, 1.74, 0.27, 0.97,
1.22, -0.21, -0.05, 1.15, 1.49, -0.15, 0.05, -0.87,
-0.3, -0.08, 0.5, 0.84, -1.67, 0.69, 0.47, 0.44,
-1.35, -0.24, -1.5, -1.32, -0.08, 0.76, -0.57,
-0.84, -1.11, 1.94, -0.68),

CF01 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, -0.117, -0.211, -0.333, -0.229, -0.272,
-0.243, -0.148, 0.191, -0.263, -0.239, -0.168,
-0.381, -0.512, -0.338, -0.296, 0.067, 0.104,
-0.254, -0.167, -0.526, -0.096, -0.43, 0.013,
-0.438, -0.297, -0.131, -0.098, -0.046, -0.063,
-0.194, -0.155, -0.645, -0.603, -0.374, -0.214,
-0.165, -0.509, -0.171, -0.442, -0.468, -0.289,
-0.427, -0.519, -0.454, 0.046, -0.275, -0.401,
-0.542, -0.488, -0.52, -0.018, -0.551, -0.444,
-0.254, -0.286, 0.048, -0.03, -0.015, -0.219,
-0.029, 0.059, 0.007, 0.157, 0.141, -0.035, 0.136,
0.526, 0.113, 0.22, -0.022, -0.173, 0.021, -0.027,
0.261, 0.082, -0.266, -0.284, -0.097, 0.097, -0.06,
0.397, 0.315, 0.302, -0.026, 0.268, -0.111, 0.084,
0.14, -0.073, 0.287, 0.061, 0.035, -0.022, -0.091,
-0.22, -0.021, -0.17, -0.184, 0.121, -0.192,
-0.24, -0.283, -0.003, -0.45, -0.138, -0.143,
0.017, -0.245, 0.003, 0.108, 0.015, -0.219, 0.09,
-0.22, -0.004, -0.178, 0.396, 0.204, 0.342, 0.079,
-0.034, -0.122, -0.24, -0.125, 0.382, 0.072, 0.294,
0.577, 0.4, 0.213, 0.359, 0.074, 0.388, 0.253, 0.167),

IND = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

lambda [N]の値を求めているだけではありませんか?
whuber

@whuberはい、それは正しいと思いますが、より根本的には、予測したいこと(つまり、事後分布を持っていること)を、すでに観察したことと区別する必要があります。ベータのサンプルを使用して、winbugsまたは後処理で明示的に予測を行うことができます。
atiretoo-モニカを復活させる

@atiretoo私が知る限り、ラムダはまさに予測したいものです。これは、対数リンクを持つポアソン分布の一般化線形モデルであり、ラムダは予測ポアソンパラメータです。それらは観察されていません。ここで行う必要があるのは、ラムダ[N]にモニターを設定することだけです。
whuber

@whuber、私はむしろモニターではh[N]なくlambda[N]...と言い、予測値の事後分布を取得します。
好奇心の

@tomek h[N]は予測値ではありません。これは、一連の予測ポアソン分布からの描画のコレクションになります。そのため、ポアソンパラメーターの変動とそれらのポアソン分布自体の変動を組み合わせています。関連するのは、の事後分布ですlambda[N]
whuber

回答:


6

h監視するパラメータのリストに変数を追加するだけです。R2WinBUGSのようなパッケージを使用している場合、関数の引数にh渡されるリストに変数を追加します。次に、最後の値(NAのある値)を確認します-事後分布が得られます。parameters.to.savebugsh

これは、ベイジアン推論で予測を行う通常の方法です(この質問も参照)。それは素晴らしくてシンプルです!パラメータの評価と予測を分離する必要はもうありません。すべてが一度に行われます。パラメータの事後分布は、実際のデータによって提供され、NA値(「予測」として)に伝播されます。


トーマス、助けてくれてありがとう。Sample Monitor Toolでhの変数を監視しようとしましたが、機能しません。また助けていただけませんか?以下は、WinBUGSで行った手順です(R2WinBUGSの使用方法がわかりません)。1)Sample Monitor ToolでSampleを選択します。2)ノードとマークされた白いボックスにhと入力します。3)セットとマークされたボタンをクリックします4)hです監視したいパラメーターのリストにはありませんが、他のパラメーター(beta0、beta1、beta2、beta3、p)がリストに表示されています。監視したいパラメーターのリストに「h」を追加する方法を知っていますか?もう一度ありがとう!
Bo Yu

@ BoYu、R2WinBUGSパッケージを使用してRからWinBUGSを実行しているため、WinBUGSで直接実行する方法がわかりません。Rスクリプトを保存してバッチとして実行するだけでなく、独自のグラフなどを作成できるため、はるかに実用的です。スクリプトの例については、こちらご覧ください
好奇心が

とは言っても、WinBUGS自体でも確実に可能ですが、その方法はわかりません(ほとんどの人がRから呼び出すと思います)。
好奇心が

1
まず、whuber、atiretoo、Tomasに感謝します。whuberがすでに述べたように、はい、それは一般化線形モデルです。hの変数は、異なる予測子(CF01、CF02、CF03、およびIND)で条件付けられた変動率(ラムダ)のポアソン分布によって近似されます。hの最後の値は私が知る必要があるものであり、観察されません(NAとマークされています)が、hの他のすべての値は観察されます。私はwhuberが正しいと思います、サンプルモニターツールでパラメーターとしてラムダを設定し、ラムダの最後の値の統計をチェックし、さらに最後のhの予測を取得する必要があります。皆さんありがとう。
Bo Yu

1
@トーマスさん、どうもありがとうございました。はい、そうです!WinBUGSは、統計と確率密度を含むh [N]の予測を提供します。分かりました。よろしく、
ボーゆう
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.