では、「一般化線形モデルにA実施者のガイド」のパラグラフ1.83でそれがことが述べられています。
「ポアソン乗法GLMの特定のケースでは、エクスポージャーの対数に等しいオフセット項を使用してクレームカウントをモデリングすると、以前の重みが各観測のエクスポージャーと等しくなるように設定されたクレーム頻度のモデリングと同じ結果が生成されたことが示されます。 」
私はこの結果についてこれ以上の参考文献を見つけることができなかったので、ステートメントが正しいことの証拠を見つけることができなかったいくつかの経験的テストを行いました。この結果が正しい/間違っている理由について誰かが洞察を提供できますか?
参考までに、私は次のRコードを使用して仮説をテストしました。この仮説では、上記の2つのケースで同様の結果を得ることができませんでした。
n=1000
m=10
# Generate random data
X = matrix(data = rnorm(n*m)+1, ncol = m, nrow = n)
intercept = 2
coefs = runif(m)
offset = runif(n)
## DGP: exp of Intercept + linear combination X variables + log(offset)
mu = exp(intercept + X%*%coefs + log(offset))
y = rpois(n=n, lambda=mu)
df = data.frame('y'=y, 'X'=X, 'offset' = offset)
formula = paste("y ~",paste(colnames(df)[grepl("X", colnames(df))], collapse = "+"))
#First model using log(offset) as offset
fit1 = glm(formula, family = "poisson", df, offset = log(offset))
#Second model using offset as weights for individual observations
fit2 = glm(formula, family = "poisson", df, weights = offset)
#Third model using poisson model on y/offset as reference
dfNew = df
dfNew$y = dfNew$y/offset
fit3 = glm(formula, family = "poisson", dfNew)
#Combine coefficients with the true coefficients
rbind(fit1$coefficients, fit2$coefficients, fit3$coefficients, c(intercept,coefs))
このコードを実行した結果の係数の推定値を以下に示します。
>
(Intercept) X.1 X.2 X.3 X.4 X.5 X.6
[1,] 1.998277 0.2923091 0.4586666 0.1802960 0.11688860 0.7997154 0.4786655
[2,] 1.588620 0.2708272 0.4540180 0.1901753 0.07284985 0.7928951 0.5100480
[3,] 1.983903 0.2942196 0.4593369 0.1782187 0.11846876 0.8018315 0.4807802
[4,] 2.000000 0.2909240 0.4576965 0.1807591 0.11658183 0.8005451 0.4780123
X.7 X.8 X.9 X.10
[1,] 0.005772078 0.9154808 0.9078758 0.3512824
[2,] -0.003705015 0.9117014 0.9063845 0.4155601
[3,] 0.007595660 0.9181014 0.9076908 0.3505173
[4,] 0.005881960 0.9150350 0.9084375 0.3511749
>
そして、係数が同一ではないことがわかります。
rm(list=ls() )
ここに投稿するRコードには実際に含めないでください。それは誰かがそれを実行していることに驚き、彼らをあなたに怒らせます。削除しました。また、コードを実行した結果を含めるように編集しました。元々これを行っていた場合、コードを自分で実行する読者はほとんどいないため、おそらくsom応答が速くなったでしょう。