比較的低次元の設定(n >> p)でフィーチャの選択にLassoを使用しています。Lassoモデルを近似した後、ペナルティなしでモデルを近似するために、非ゼロ係数の共変量を使用します。ラッソが私に与えることのできない公平な推定値が欲しいので、私はこれをしています。また、不偏推定値のp値と信頼区間も必要です。
このトピックに関する文献を見つけることができません。私が見つけた文献のほとんどは、適合モデルではなく、Lasso推定に信頼区間を置くことに関するものです。
私が読んだことから、データセット全体を使用してモデルを再フィットすると、非現実的に小さなp値/ stdエラーが発生します。現時点では、サンプル分割(Wasserman and Roeder(2014)またはMeinshausen et al。(2009)のスタイル)は適切な対応策のようですが、私はさらに提案を探しています。
誰もこの問題に遭遇しましたか?もしそうなら、いくつかの提案を提供してください。