FEと比較したPooled-OLSおよびRE Estimatorの有用性について、いくつかの議論がありました。
つまり、私が知る限り、プールされたOLS推定は、単にPanelデータに対して実行されるOLS手法です。したがって、個々に固有の影響はすべて完全に無視されます。そのため、誤差項の直交性などの基本的な仮定の多くに違反しています。
REは、ランダムであると想定されるモデルに個別の仕様インターセプトを実装することによってこの問題を解決します。これは、モデルの完全な外来性を意味します。これはHausmann-Testでテストできます。
ほとんどすべてのモデルにはいくつかの内因性の問題があるため、FE-Estimationは最良の選択であり、最良の一貫した推定を提供しますが、個々の特定のパラメーターは失われます。
私が自問している質問は、プールされたOLSまたはランダム効果を使用することが実際に意味があるのはいつかということです。プールされたOLSは非常に多くの仮定に違反しているため、まったく意味がありません。また、RE-Estimatorの強力な外因性は基本的に与えられないので、いつそれが実際に役立つのでしょうか?
これに加えて、すべてのモデルで、自己相関は考慮できませんか?