lmerTestによって提供された、Rのlme4における線形混合モデルのt検定とF検定の違いに関する質問に遭遇しました。線形混合モデルのあらゆる種類のp値を計算する際の問題(主に自由度の定義に問題があることが原因であることがわかっているため)と、主な効果の解釈に関する問題を認識しています。重要な相互作用の存在(マージナリティの原則に基づく)。
簡単に言うと、データは2つの条件(合同TRUE / FALSE)の実験からのもので、6セットのセンサーで測定されます。これは、2つの要因の組み合わせとして説明できます。 。
以下の要約出力からわかるように、t.testは有意な合同効果(p = 0.12)を示しませんが、anova出力は非常に有意な合同効果(p = 2.8e-10)を示します。適合性には2つのレベルしかないため、これはF検定が固定因子のいくつかのレベルでオムニバステストを行った結果ではありません。したがって、何がanova出力に非常に重要な結果をもたらすのかはわかりません。これは、もちろんモデルのパラメータ化に主効果を含めることに依存する、合同性を伴う強い相互作用があるという事実によるものですか?
CrossValidatedでこの質問に対する以前の回答を探しましたが、おそらくこの質問に対する最初の回答を除いて、関連するものを見つけることができませんでした。しかし、それが本当の答えを提供するのであれば、それは数学に内在しているので、私が助けようとしている人に説明できる概念的な答えを探しています。
> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) * factor(anteriority) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 348903.5
Scaled residuals:
Min 1Q Median 3Q Max
-7.0440 -0.6002 0.0069 0.6038 11.3912
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 1.773 1.332
Subject (Intercept) 2.548 1.596
Residual 111.396 10.554
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.768e-03 3.973e-01 7.900e+01 0.012 0.9905
factor(congruity)TRUE 3.758e-01 2.410e-01 4.611e+04 1.559 0.1189
factor(laterality)left 7.154e-02 2.430e-01 4.610e+04 0.294 0.7685
factor(laterality)right -2.003e-01 2.430e-01 4.610e+04 -0.824 0.4098
factor(anteriority)posterior -4.203e-02 2.430e-01 4.610e+04 -0.173 0.8627
factor(congruity)TRUE:factor(laterality)left -1.013e-01 3.404e-01 4.610e+04 -0.298 0.7660
factor(congruity)TRUE:factor(laterality)right 7.233e-02 3.404e-01 4.610e+04 0.213 0.8317
factor(congruity)TRUE:factor(anteriority)posterior 6.162e-01 3.404e-01 4.610e+04 1.810 0.0702 .
factor(laterality)left:factor(anteriority)posterior 2.568e-01 3.437e-01 4.610e+04 0.747 0.4549
factor(laterality)right:factor(anteriority)posterior 1.763e-01 3.437e-01 4.610e+04 0.513 0.6080
factor(congruity)TRUE:factor(laterality)left:factor(anteriority)posterior -5.162e-02 4.813e-01 4.610e+04 -0.107 0.9146
factor(congruity)TRUE:factor(laterality)right:factor(anteriority)posterior -2.420e-01 4.813e-01 4.610e+04 -0.503 0.6152
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) fc()TRUE fctr(ltrlty)l fctr(ltrlty)r fctr(n) fctr(cngrty)TRUE:fctr(ltrlty)l fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(c)TRUE -0.310
fctr(ltrlty)l -0.306 0.504
fctr(ltrlty)r -0.306 0.504 0.500
fctr(ntrrt) -0.306 0.504 0.500 0.500
fctr(cngrty)TRUE:fctr(ltrlty)l 0.218 -0.706 -0.714 -0.357 -0.357
fctr(cngrty)TRUE:fctr(ltrlty)r 0.218 -0.706 -0.357 -0.714 -0.357 0.500
fctr(cngrty)TRUE:fctr(n) 0.218 -0.706 -0.357 -0.357 -0.714 0.500 0.500
fctr(ltrlty)l:() 0.216 -0.357 -0.707 -0.354 -0.707 0.505 0.252
fctr(ltrlty)r:() 0.216 -0.357 -0.354 -0.707 -0.707 0.252 0.505
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.154 0.499 0.505 0.252 0.505 -0.707 -0.354
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.154 0.499 0.252 0.505 0.505 -0.354 -0.707
fctr(cngrty)TRUE:fctr(n) fctr(ltrlty)l:() fctr(ltrlty)r:() fctr(cngrty)TRUE:fctr(ltrlty)l:()
fctr(c)TRUE
fctr(ltrlty)l
fctr(ltrlty)r
fctr(ntrrt)
fctr(cngrty)TRUE:fctr(ltrlty)l
fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(cngrty)TRUE:fctr(n)
fctr(ltrlty)l:() 0.505
fctr(ltrlty)r:() 0.505 0.500
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.707 -0.714 -0.357
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.707 -0.357 -0.714 0.500
> anova(final.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(congruity) 4439.1 4439.1 1 46142 39.850 2.768e-10 ***
factor(laterality) 572.9 286.5 2 46095 2.572 0.076430 .
factor(anteriority) 1508.1 1508.1 1 46095 13.538 0.000234 ***
factor(congruity):factor(laterality) 31.6 15.8 2 46095 0.142 0.867581
factor(congruity):factor(anteriority) 775.1 775.1 1 46095 6.958 0.008349 **
factor(laterality):factor(anteriority) 111.9 56.0 2 46095 0.502 0.605126
factor(congruity):factor(laterality):factor(anteriority) 31.2 15.6 2 46095 0.140 0.869183
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
@Aurelieの質問に答えて:
> congruity.mod<-lmer(uV~1+factor(congruity)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(congruity.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 494077.2
Scaled residuals:
Min 1Q Median 3Q Max
-10.1673 -0.5790 -0.0097 0.5818 12.6088
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 4.568 2.137
Subject (Intercept) 6.132 2.476
Residual 178.137 13.347
Number of obs: 61568, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.6055 0.5671 57.0000 1.068 0.29
factor(congruity)FALSE -0.7105 0.1084 61535.0000 -6.558 5.51e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
fctr()FALSE -0.093
> anova(congruity.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(congruity) 7660.5 7660.5 1 61535 43.004 5.507e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> laterality.mod<-lmer(uV~1+factor(laterality)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(laterality.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(laterality) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 372848.2
Scaled residuals:
Min 1Q Median 3Q Max
-9.7033 -0.5981 -0.0076 0.6006 12.2265
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 5.568 2.360
Subject (Intercept) 6.777 2.603
Residual 186.966 13.674
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.8128 0.6115 61.0000 1.329 0.18877
factor(laterality)left -0.4260 0.1559 46105.0000 -2.733 0.00628 **
factor(laterality)right -0.6709 0.1559 46105.0000 -4.304 1.68e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) fctr(ltrlty)l
fctr(ltrlty)l -0.127
fctr(ltrlty)r -0.127 0.500
> anova(laterality.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(laterality) 3548.2 1774.1 2 46105 9.4889 7.584e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anteriority.mod<-lmer(uV~1+factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(anteriority.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(anteriority) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 372738.6
Scaled residuals:
Min 1Q Median 3Q Max
-9.6668 -0.5986 -0.0032 0.6017 12.2711
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 5.569 2.360
Subject (Intercept) 6.777 2.603
Residual 186.525 13.657
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -0.2693 0.6081 59.0000 -0.443 0.66
factor(anteriority)posterior 1.4328 0.1271 46105.0000 11.272 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
fctr(ntrrt) -0.105
> anova(anteriority.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(anteriority) 23700 23700 1 46106 127.06 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
更新: @Henrikの回答に基づいてコントラストを更新した後:
> options(contrasts=c("contr.sum","contr.poly"))
> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) * factor(anteriority) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 372689.8
Scaled residuals:
Min 1Q Median 3Q Max
-9.6772 -0.5979 -0.0016 0.5977 12.3439
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 5.556 2.357
Subject (Intercept) 6.752 2.599
Residual 186.232 13.647
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.355e-01 6.039e-01 5.800e+01 0.721 0.4737
factor(congruity)1 4.501e-01 6.396e-02 4.613e+04 7.037 1.99e-12 ***
factor(laterality)1 3.628e-01 8.983e-02 4.610e+04 4.039 5.38e-05 ***
factor(laterality)2 -5.732e-02 8.983e-02 4.610e+04 -0.638 0.5234
factor(anteriority)1 -7.183e-01 6.352e-02 4.610e+04 -11.308 < 2e-16 ***
factor(congruity)1:factor(laterality)1 1.433e-01 8.983e-02 4.610e+04 1.596 0.1106
factor(congruity)1:factor(laterality)2 -1.535e-01 8.983e-02 4.610e+04 -1.709 0.0875 .
factor(congruity)1:factor(anteriority)1 9.442e-02 6.352e-02 4.610e+04 1.487 0.1371
factor(laterality)1:factor(anteriority)1 2.282e-01 8.983e-02 4.610e+04 2.540 0.0111 *
factor(laterality)2:factor(anteriority)1 -2.121e-01 8.983e-02 4.610e+04 -2.362 0.0182 *
factor(congruity)1:factor(laterality)1:factor(anteriority)1 -7.802e-03 8.983e-02 4.610e+04 -0.087 0.9308
factor(congruity)1:factor(laterality)2:factor(anteriority)1 -1.141e-02 8.983e-02 4.610e+04 -0.127 0.8989
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) fctr(c)1 fctr(l)1 fct()2 fctr(n)1 fctr(cngrty)1:fctr(l)1 fc()1:()2 fctr(cngrty)1:fctr(n)1
fctr(cngr)1 -0.003
fctr(ltrl)1 0.000 0.000
fctr(ltrl)2 0.000 0.000 -0.500
fctr(ntrr)1 0.000 0.000 0.000 0.000
fctr(cngrty)1:fctr(l)1 0.000 0.000 -0.020 0.010 0.000
fctr()1:()2 0.000 0.000 0.010 -0.020 0.000 -0.500
fctr(cngrty)1:fctr(n)1 0.000 0.000 0.000 0.000 -0.020 0.000 0.000
fctr(l)1:()1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fctr()2:()1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f()1:()1:() 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f()1:()2:() 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fctr(l)1:()1 f()2:( f()1:()1:
fctr(cngr)1
fctr(ltrl)1
fctr(ltrl)2
fctr(ntrr)1
fctr(cngrty)1:fctr(l)1
fctr()1:()2
fctr(cngrty)1:fctr(n)1
fctr(l)1:()1
fctr()2:()1 -0.500
f()1:()1:() -0.020 0.010
f()1:()2:() 0.010 -0.020 -0.500
> anova(final.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(congruity) 9221.9 9221.9 1 46129 49.518 1.993e-12 ***
factor(laterality) 3511.5 1755.7 2 46095 9.428 8.062e-05 ***
factor(anteriority) 23814.0 23814.0 1 46095 127.873 < 2.2e-16 ***
factor(congruity):factor(laterality) 680.3 340.1 2 46095 1.826 0.16101
factor(congruity):factor(anteriority) 411.5 411.5 1 46095 2.210 0.13714
factor(laterality):factor(anteriority) 1497.4 748.7 2 46095 4.020 0.01796 *
factor(congruity):factor(laterality):factor(anteriority) 8.6 4.3 2 46095 0.023 0.97713
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova()
とsummary()
からlmerMod
ですか?