スパースカテゴリカルクロスエントロピー多分類モデルへの入力用にデータを準備する方法[終了]


7

だから私は日付やツイート自体などのいくつかの列を含むツイートのセットをいくつか持っていますが、2つの列を使用してモデルを構築したいです(感情&株価)感情分析は各ツイートで実行され、株式私のDBではそれらの隣にそのような価格:

+--------------------+-------------+
| sentiment          | stock_price |
+--------------------+-------------+
| 0.0454545454545455 |      299.82 |
| 0.0588235294117647 |      299.83 |
| 0.0434782608695652 |      299.83 |
|            -0.0625 |      299.69 |
| 0.0454545454545455 |       299.7 |
+--------------------+-------------+

sparse_categorical_crossentropyの入力用にこのデータを準備するにはどうすればよいですか?私はつぶやきの感情を取得し、それらと株価の相関関係を見つけることができるようにしたいと考えています。出力ラベルを高、低、低にしたいのですが、方法がわかりません。これまでのところ、モデルを作成しましたが、入力データを正しくフォーマットしたかどうかわかりません

しかし、モデルをトレーニングすると、これが出力として得られます。

モデル

入力データについて、精度と検証精度が変わらないのは何ですか?これは過剰適合の兆候のようです。ドロップアウトレイヤーを追加しようとしましたが、機能しません。どうすれば修正できますか?どこが間違っているのですか?

株価のデータは、自分の1つのホットエンコーディングのように1/0 / -1を使用して、株価がまだ上がっているか下がっているのかを示すようにしました。

Name: pct_chg, dtype: float64
0       0.0
1       1.0
2      -1.0
3      -1.0
4      -1.0

そして、私はここの感情について同じことをしています:

0       0.0
1       1.0
2       0.0
3      -1.0
4       1.0
5       0.0
6      -1.0

データを正しく変換していますか?

私が述べたようにモデルをどのように機能させることができますか?

Kerasのnp_utils.to_categorical()メソッドを使用しようとしましたが、これにより2D配列が得られ、何らかの理由でKerasからこのエラーが発生します。

ValueError: Error when checking model target: expected dense_3 to have shape (None, 1) but got array with shape (10000, 2)

2D配列であるinput_dim = 2を入れても、input_dim = 3を入れない限り同じエラーが発生し、2を完全にスキップして3になり、このエラーが発生します

ValueError: Error when checking model target: expected dense_3 to have shape (None, 3) but got array with shape (10000, 2)

そのため、1D配列に固執し、これが5つのエポックから得られるものです。

Train on 4000 samples, validate on 6000 samples
Epoch 1/5
  32/4000 [..............................] - ETA: 0s - loss: 0.6930 - acc: 0.3125
 384/4000 [=>............................] - ETA: 0s - loss: 0.6570 - acc: 0.2370
 736/4000 [====>.........................] - ETA: 0s - loss: 0.6362 - acc: 0.2337
1120/4000 [=======>......................] - ETA: 0s - loss: 0.6151 - acc: 0.2321
1472/4000 [==========>...................] - ETA: 0s - loss: 0.5992 - acc: 0.2371
1824/4000 [============>.................] - ETA: 0s - loss: 0.5874 - acc: 0.2401
2176/4000 [===============>..............] - ETA: 0s - loss: 0.5765 - acc: 0.2459
2560/4000 [==================>...........] - ETA: 0s - loss: 0.5652 - acc: 0.2457
2912/4000 [====================>.........] - ETA: 0s - loss: 0.5568 - acc: 0.2448
3232/4000 [=======================>......] - ETA: 0s - loss: 0.5519 - acc: 0.2475
3584/4000 [=========================>....] - ETA: 0s - loss: 0.5440 - acc: 0.2517
3936/4000 [============================>.] - ETA: 0s - loss: 0.5391 - acc: 0.2492
4000/4000 [==============================] - 1s - loss: 0.5379 - acc: 0.2487 - val_loss: 0.5083 - val_acc: 0.2032
Epoch 2/5
  32/4000 [..............................] - ETA: 0s - loss: 0.4986 - acc: 0.3438
 384/4000 [=>............................] - ETA: 0s - loss: 0.4640 - acc: 0.2370
 736/4000 [====>.........................] - ETA: 0s - loss: 0.4619 - acc: 0.2473
1088/4000 [=======>......................] - ETA: 0s - loss: 0.4637 - acc: 0.2537
1472/4000 [==========>...................] - ETA: 0s - loss: 0.4666 - acc: 0.2575
1824/4000 [============>.................] - ETA: 0s - loss: 0.4657 - acc: 0.2467
2208/4000 [===============>..............] - ETA: 0s - loss: 0.4600 - acc: 0.2509
2560/4000 [==================>...........] - ETA: 0s - loss: 0.4585 - acc: 0.2523
2912/4000 [====================>.........] - ETA: 0s - loss: 0.4558 - acc: 0.2514
3264/4000 [=======================>......] - ETA: 0s - loss: 0.4548 - acc: 0.2509
3584/4000 [=========================>....] - ETA: 0s - loss: 0.4547 - acc: 0.2492
3936/4000 [============================>.] - ETA: 0s - loss: 0.4552 - acc: 0.2490
4000/4000 [==============================] - 1s - loss: 0.4558 - acc: 0.2480 - val_loss: 0.4797 - val_acc: 0.2032
Epoch 3/5
  32/4000 [..............................] - ETA: 0s - loss: 0.3874 - acc: 0.2812
 352/4000 [=>............................] - ETA: 0s - loss: 0.4465 - acc: 0.2585
 704/4000 [====>.........................] - ETA: 0s - loss: 0.4394 - acc: 0.2372
1056/4000 [======>.......................] - ETA: 0s - loss: 0.4375 - acc: 0.2557
1408/4000 [=========>....................] - ETA: 0s - loss: 0.4384 - acc: 0.2507
1728/4000 [===========>..................] - ETA: 0s - loss: 0.4373 - acc: 0.2546
2048/4000 [==============>...............] - ETA: 0s - loss: 0.4363 - acc: 0.2549
2400/4000 [=================>............] - ETA: 0s - loss: 0.4334 - acc: 0.2525
2752/4000 [===================>..........] - ETA: 0s - loss: 0.4326 - acc: 0.2529
3104/4000 [======================>.......] - ETA: 0s - loss: 0.4324 - acc: 0.2519
3424/4000 [========================>.....] - ETA: 0s - loss: 0.4304 - acc: 0.2480
3776/4000 [===========================>..] - ETA: 0s - loss: 0.4311 - acc: 0.2489
4000/4000 [==============================] - 1s - loss: 0.4300 - acc: 0.2480 - val_loss: 0.4663 - val_acc: 0.2032
Epoch 4/5
  32/4000 [..............................] - ETA: 0s - loss: 0.3656 - acc: 0.3438
 384/4000 [=>............................] - ETA: 0s - loss: 0.4214 - acc: 0.2474
 736/4000 [====>.........................] - ETA: 0s - loss: 0.4133 - acc: 0.2514
1088/4000 [=======>......................] - ETA: 0s - loss: 0.4154 - acc: 0.2417
1440/4000 [=========>....................] - ETA: 0s - loss: 0.4140 - acc: 0.2431
1792/4000 [============>.................] - ETA: 0s - loss: 0.4183 - acc: 0.2461
2144/4000 [===============>..............] - ETA: 0s - loss: 0.4162 - acc: 0.2481
2496/4000 [=================>............] - ETA: 0s - loss: 0.4149 - acc: 0.2468
2848/4000 [====================>.........] - ETA: 0s - loss: 0.4138 - acc: 0.2521
3168/4000 [======================>.......] - ETA: 0s - loss: 0.4171 - acc: 0.2487
3488/4000 [=========================>....] - ETA: 0s - loss: 0.4172 - acc: 0.2480
3840/4000 [===========================>..] - ETA: 0s - loss: 0.4131 - acc: 0.2479
4000/4000 [==============================] - 1s - loss: 0.4158 - acc: 0.2480 - val_loss: 0.4580 - val_acc: 0.2032
Epoch 5/5
  32/4000 [..............................] - ETA: 0s - loss: 0.3798 - acc: 0.3438
 384/4000 [=>............................] - ETA: 0s - loss: 0.3999 - acc: 0.2682
 736/4000 [====>.........................] - ETA: 0s - loss: 0.4005 - acc: 0.2663
1088/4000 [=======>......................] - ETA: 0s - loss: 0.3960 - acc: 0.2610
1440/4000 [=========>....................] - ETA: 0s - loss: 0.3988 - acc: 0.2465
1760/4000 [============>.................] - ETA: 0s - loss: 0.3962 - acc: 0.2500
2080/4000 [==============>...............] - ETA: 0s - loss: 0.3997 - acc: 0.2428
2400/4000 [=================>............] - ETA: 0s - loss: 0.4018 - acc: 0.2492
2752/4000 [===================>..........] - ETA: 0s - loss: 0.4062 - acc: 0.2522
3104/4000 [======================>.......] - ETA: 0s - loss: 0.4054 - acc: 0.2494
3424/4000 [========================>.....] - ETA: 0s - loss: 0.4059 - acc: 0.2468
3744/4000 [===========================>..] - ETA: 0s - loss: 0.4051 - acc: 0.2479
4000/4000 [==============================] - 1s - loss: 0.4060 - acc: 0.2480 - val_loss: 0.4523 - val_acc: 0.2032

上記の出力を生成するために使用されたコードは次のとおりです。

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import SGD
import pymysql as mysql
import numpy as np
from keras.utils import np_utils
import pandas as pd
import matplotlib.pyplot as plt
import config


##This is finding the % change between the stock prices. a negative number mean it has drops and positive number mean it has rissen
def stockToVec(y_vali):
    x = y_vali.copy()
    x['pct_chg'] = x['stock_price'].pct_change()
    x['pct_chg'][0] = 0
    ##I then make my own One Hot Encoding in the loop below.
    for index, row in x.iterrows():
        if row['pct_chg'] > 0:
            row['pct_chg'] = 1
        if row['pct_chg'] < 0:
            row['pct_chg'] = -1
        if row['pct_chg'] == 0:
            row['pct_chg'] = 0
    del (x['stock_price'])
    return x

def sentToVec(y_vali):
    y = y_vali.copy()
    y['sen_chg'] = y['sentiment'].pct_change()
    y['sen_chg'][0] = 0
    ##I then make my own One Hot Encoding in the loop below.
    for index, row in y.iterrows():
        if row['sen_chg'] > 0:
            row['sen_chg'] = 1
        if row['sen_chg'] < 0:
            row['sen_chg'] = -1
        if row['sen_chg'] == 0:
            row['sen_chg'] = 0
    del(y['sentiment'])
    return y


try:
    sql = "SELECT stock_price, sentiment from tweets WHERE stock_price != 301.44 AND sentiment != 0 LIMIT 0, 10000"
    con = mysql.connect(config.dbhost, config.dbuser, config.dbpassword, config.dbname, charset='utf8mb4', autocommit=True)
    results = pd.read_sql(sql=sql, con=con)
finally:
    con.close()

sent = sentToVec(results)
stock = stockToVec(results)


#This is the ANN Model
model = Sequential()
model.add(Dense(40, input_dim=1, activation='softmax'))
model.add(Dropout(0.4))
model.add(Dense(2000, activation='relu'))
model.add(Dropout(0.3))
##2 Layers to predict if the stock is going up or down
model.add(Dense(2, activation='softmax'))

sgd = SGD(lr=0.01, momentum=0.3, decay=0.05, nesterov=True)

model.compile(loss='sparse_categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

history = model.fit(stock['pct_chg'].as_matrix(), sent['sen_chg'].as_matrix(), shuffle=True, validation_split=0.6, epochs=5)

#Graph
plt.xlabel("Epochs")
plt.plot(history.history['loss'], color='b', label="Loss")
plt.plot(history.history['acc'], color='g', label="Accuracy")
plt.plot(history.history['val_loss'], color='k', label="Validation Loss")
plt.plot(history.history['val_acc'], color='m', label="Validation Accuracy")
plt.legend()
plt.show()

回答:


2

問題はそれです

metrics=['accuracy']

デフォルトはカテゴリカルな精度です。疎なカテゴリカルな精度が必要です。

from keras import metrics

model.compile(loss='sparse_categorical_crossentropy', 
    optimizer=sgd, 
    metrics=[metrics.sparse_categorical_accuracy])
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.