LassoとRidgeの両方で回帰モデルを実行しています(0〜5の範囲の離散結果変数を予測するため)。モデルを実行する前に、のSelectKBest
メソッドを使用scikit-learn
して、機能セットを250から25に減らします。初期の特徴選択を行わないと、ラッソとリッジの両方で精度スコアが低くなります(サンプルサイズが600と小さいためである可能性があります)。また、一部の機能は相互に関連していることに注意してください。
モデルを実行した後、LassoとRidgeの予測精度はほぼ同じであることがわかります。ただし、係数の絶対値で並べ替えた後、最初の10個のフィーチャをチェックすると、最大で%50のオーバーラップがあることがわかります。
つまり、機能の重要性が各方法で割り当てられていることを考えると、選択したモデルに基づいてまったく異なる解釈をする可能性があります。
通常、機能はWebサイトでのユーザーの行動のいくつかの側面を表します。そのため、予測能力が高い機能(ユーザーの行動)と弱い機能(ユーザーの行動)を強調して、調査結果を説明したいと思います。しかし、今のところどうすればいいのかわかりません。モデルの解釈にはどのようにアプローチすればよいですか?たとえば、両方を組み合わせて重複するものを強調表示する必要がありますか、それとも解釈性が向上するので、投げ縄を使用する必要がありますか?
Normally, the features represent some aspects of user behavior in a web site. Therefore, I want to explain the findings by highlighting the features (user behaviors) with stronger predictive ability vs weaker features (user behaviors) .