完全なモデルに基づく推論は適切であり、適切な場合はどのような状況ですか?
応答変数といくつかの候補予測子変数の間の潜在的な関係に関心があり、何らかの形の回帰(たとえば、一般化線形モデル)を使用してそれに答えるとします。どの予測因子が「重要」であるか、または応答と明らかに真の関係にあるかを推測する1つのアプローチは、情報理論的基準(たとえばAIC)に基づくモデル比較です。最終モデルで保持されない変数は応答とある程度の関係があるかもしれませんが、モデルに保持されている他の予測子を考えると、それらは本質的に追加の実質的な情報を提供しません。
完全な(グローバル)モデル(すべての候補予測子を含む)を単純に当てはめて、そこで停止し、t統計(または他の統計)とp値のみに基づいて個々の予測子に基づいて推論する方が適切な場合はありますかこの完全なモデルでは、さらにモデルを選択する必要はありませんか?
私は、潜在的な欠点はあるものの、これを行うのが賢明なことかもしれないという提案に遭遇しました(例:Whittingham et al。「なぜなぜ生態学と行動に段階的モデリングを使用するのですか?」(2006)。偏りはありませんが、モデルの他の(「重要でない」)変数がそれらに影響を与える可能性があるため、他のソースはこれらの推定値とp値は信頼できないと述べています。
潜在的な生物学的関係を理解することを目的とする場合、どの方法がより適切でしょうか?