多くの場合、0から1の間の値をとる分数、比率、確率などの応答を処理するために、ベータ回帰(ベータ分布と通常はロジットリンク関数を使用するGLM)が推奨されます:結果の回帰(比率または分数) 0と1の間。
ただし、応答変数が0または1に少なくとも1回等しくなるとすぐにベータ回帰を使用できないと常に主張されています。その場合、ゼロ/ 1膨張ベータモデルを使用するか、応答の変換などを行う必要があります。1および0を含む比率データのベータ回帰。
私の質問は次のとおりです。ベータ分布のどのプロパティが、ベータ回帰が正確な0と1を処理するのを妨げますか、そしてその理由は何ですか?
とはベータ配布をサポートしていないと思います。しかし、すべての形状パラメータのためにと、両方の0と1があるベータ分布の支援では、分布が片側または両側に無限大に行くことをより小さな形状パラメータのみです。そしておそらく、サンプルデータは、とが最適に適合し、両方とも超えるようなものです。
場合によっては、実際にはゼロ/ 1でもベータ回帰を使用できるということですか?
もちろん、0と1がベータ分布をサポートしている場合でも、正確に0または1を観測する確率はゼロです。しかし、他の与えられた数えられる値のセットを観察する確率はそうなので、これは問題になりえないでしょうか?(@Glen_bによるこのコメント)。
ベータ回帰のコンテキストでは、ベータ分布は異なる方法でパラメーター化されますが、では、すべてのに対してで明確に定義される必要があります。