一連のパラメーターのグリッド検索を設定しました。バイナリ分類を行うKerasニューラルネットに最適なパラメーターを見つけようとしています。出力は1または0です。約200の機能があります。グリッド検索を行ったとき、一連のモデルとそのパラメーターを取得しました。最良のモデルには次のパラメーターがありました。
Epochs : 20
Batch Size : 10
First Activation : sigmoid
Learning Rate : 1
First Init : uniform
そしてそのモデルの結果は:
loss acc val_loss val_acc
1 0.477424 0.768542 0.719960 0.722550
2 0.444588 0.788861 0.708650 0.732130
3 0.435809 0.794336 0.695768 0.732682
4 0.427056 0.798784 0.684516 0.721137
5 0.420828 0.803048 0.703748 0.720707
6 0.418129 0.806206 0.730803 0.723717
7 0.417522 0.805206 0.778434 0.721936
8 0.415197 0.807549 0.802040 0.733849
9 0.412922 0.808865 0.823036 0.731761
10 0.410463 0.810654 0.839087 0.730410
11 0.407369 0.813892 0.831844 0.725252
12 0.404436 0.815760 0.835217 0.723102
13 0.401728 0.816287 0.845178 0.722488
14 0.399623 0.816471 0.842231 0.717514
15 0.395746 0.819498 0.847118 0.719541
16 0.393361 0.820366 0.858291 0.714873
17 0.390947 0.822025 0.850880 0.723348
18 0.388478 0.823341 0.858591 0.721014
19 0.387062 0.822735 0.862971 0.721936
20 0.383744 0.825762 0.880477 0.721322
そのため、より多くのエポック(そのうちの150)でそのモデルを再実行し、これらは私が得た結果です。なぜこれが起こっているのかわかりませんが、これは正常なのでしょうか、それとも何が問題なのでしょうか?
loss acc val_loss val_acc
1 0.476387 0.769279 0.728492 0.722550
2 0.442604 0.789941 0.701136 0.730472
3 0.431936 0.796915 0.676995 0.723655
4 0.426349 0.800258 0.728562 0.721997
5 0.421143 0.803653 0.739789 0.716900
6 0.416389 0.807575 0.720850 0.711373
7 0.413163 0.809154 0.751340 0.718128
8 0.409013 0.811418 0.780856 0.723409
9 0.405871 0.813576 0.789046 0.719295
10 0.402579 0.815524 0.804526 0.720278
11 0.400152 0.816813 0.811905 0.719541
12 0.400304 0.817261 0.787449 0.713154
13 0.397917 0.817945 0.804222 0.721567
14 0.395266 0.819524 0.801722 0.723348
15 0.393957 0.820156 0.793889 0.719049
16 0.391780 0.821103 0.794179 0.721199
17 0.390206 0.822393 0.806803 0.722611
18 0.388075 0.823604 0.817850 0.723901
19 0.385985 0.824762 0.841883 0.722058
20 0.383762 0.826867 0.857071 0.720830
21 0.381493 0.827947 0.864432 0.718005
22 0.379520 0.829210 0.872835 0.720400
23 0.377488 0.830526 0.879962 0.721383
24 0.375619 0.830736 0.887850 0.723839
25 0.373684 0.832000 0.891267 0.724822
26 0.372023 0.832368 0.891562 0.724638
27 0.370155 0.833184 0.892528 0.724883
28 0.368511 0.834684 0.887061 0.724699
29 0.366522 0.835606 0.883541 0.724883
30 0.364500 0.836422 0.882823 0.724515
31 0.362612 0.836737 0.882611 0.722427
32 0.360742 0.837448 0.884282 0.720769
33 0.359093 0.838738 0.884339 0.719418
34 0.357436 0.839080 0.888006 0.716470
35 0.355723 0.840633 0.892658 0.713830
36 0.354305 0.840764 0.897303 0.710575
37 0.352758 0.841343 0.901147 0.709408
38 0.351414 0.842054 0.899546 0.707934
39 0.349619 0.843370 0.905133 0.704864
40 0.347993 0.844475 0.910400 0.701363
41 0.346402 0.845581 0.915086 0.699337
42 0.345014 0.845818 0.918697 0.697617
43 0.343708 0.846607 0.923413 0.695652
44 0.342335 0.847292 0.930816 0.693441
45 0.340745 0.848081 0.940737 0.689020
46 0.339623 0.848713 0.948633 0.685274
47 0.338846 0.849845 0.952492 0.683923
48 0.337724 0.850134 0.961147 0.683984
49 0.336247 0.850976 0.967792 0.683309
50 0.334444 0.851529 0.984107 0.680238
51 0.333086 0.852029 1.001179 0.678273
52 0.331756 0.853240 1.016130 0.674589
53 0.330738 0.854003 1.024875 0.673606
54 0.329548 0.854030 1.040597 0.670044
55 0.328813 0.855372 1.041871 0.668509
56 0.327120 0.855898 1.050617 0.668755
57 0.325962 0.855819 1.064525 0.666667
58 0.324602 0.856898 1.078078 0.662859
59 0.323560 0.857241 1.085016 0.661938
60 0.322243 0.858662 1.093114 0.661140
61 0.320680 0.858872 1.117269 0.656841
62 0.319267 0.860004 1.138825 0.654815
63 0.318132 0.860636 1.154959 0.653648
64 0.316956 0.861531 1.180216 0.649718
65 0.315543 0.862320 1.198216 0.648428
66 0.314405 0.862610 1.218663 0.647384
67 0.313501 0.863873 1.245123 0.644252
68 0.312513 0.864558 1.262998 0.643147
69 0.311567 0.865347 1.283213 0.641918
70 0.310069 0.866505 1.302089 0.640752
71 0.309087 0.866611 1.318972 0.641857
72 0.307767 0.867321 1.361531 0.638787
73 0.306750 0.866742 1.382162 0.638357
74 0.305760 0.867242 1.378694 0.641611
75 0.305289 0.867769 1.393187 0.642594
76 0.304089 0.868479 1.435852 0.635532
77 0.302472 0.869006 1.435019 0.639892
78 0.301118 0.869400 1.447060 0.639216
79 0.300629 0.870058 1.488730 0.634918
80 0.299364 0.870295 1.488376 0.636576
81 0.298380 0.870822 1.504260 0.634611
82 0.297253 0.871664 1.525655 0.634058
83 0.296760 0.871875 1.538717 0.632891
84 0.295502 0.872585 1.551178 0.633751
85 0.294569 0.872927 1.562323 0.633137
86 0.294780 0.872585 1.555390 0.629944
87 0.293796 0.872743 1.587800 0.627057
88 0.293029 0.873427 1.608010 0.627549
89 0.291822 0.874006 1.626047 0.627303
90 0.290643 0.874533 1.651658 0.626689
91 0.289920 0.875270 1.681202 0.623925
92 0.289661 0.875375 1.683188 0.626505
93 0.288103 0.876323 1.706517 0.625031
94 0.287917 0.876770 1.722031 0.624417
95 0.287020 0.877270 1.743283 0.624478
96 0.286750 0.877639 1.762506 0.624048
97 0.285712 0.877481 1.780433 0.622267
98 0.284635 0.878639 1.789917 0.622206
99 0.283627 0.879191 1.862468 0.616925
100 0.282214 0.879455 1.915643 0.612810
101 0.281749 0.879244 1.881444 0.615205
102 0.281710 0.879639 1.916390 0.614223
103 0.280293 0.880350 1.938470 0.612810
104 0.279233 0.881008 1.979127 0.609187
105 0.279204 0.880297 1.997384 0.606546
106 0.278264 0.881876 2.009851 0.607652
107 0.277511 0.882876 2.038530 0.606116
108 0.277521 0.881771 2.034664 0.604888
109 0.276264 0.882534 2.058179 0.604827
110 0.275230 0.883587 2.078912 0.604274
111 0.275147 0.883034 2.073272 0.603537
112 0.273717 0.883797 2.100150 0.600958
113 0.273372 0.883692 2.114416 0.601634
114 0.272626 0.883692 2.129778 0.601941
115 0.272001 0.883929 2.138462 0.601326
116 0.271344 0.884508 2.148771 0.602923
117 0.270134 0.884692 2.115114 0.604581
118 0.269494 0.885140 2.135719 0.603107
119 0.268803 0.885587 2.162380 0.601695
120 0.268593 0.886219 2.183793 0.599239
121 0.267141 0.886035 2.195810 0.600221
122 0.266565 0.886772 2.192426 0.600528
123 0.265715 0.886561 2.260088 0.596598
124 0.264788 0.887693 2.253029 0.597335
125 0.263643 0.887693 2.289285 0.597028
126 0.263612 0.887956 2.311600 0.596536
127 0.261996 0.888588 2.339754 0.595063
128 0.263069 0.887588 2.364881 0.594449
129 0.261684 0.889272 2.321568 0.596598
130 0.261304 0.889509 2.389324 0.591562
131 0.260336 0.889640 2.403542 0.593098
132 0.259131 0.890272 2.413964 0.592115
133 0.258756 0.890193 2.422454 0.591992
134 0.257794 0.891009 2.454598 0.591255
135 0.257187 0.891009 2.459366 0.590088
136 0.257249 0.891088 2.448625 0.591624
137 0.256344 0.891404 2.495104 0.589167
138 0.255590 0.891720 2.495032 0.589781
139 0.254596 0.892299 2.496050 0.589229
140 0.254308 0.892588 2.510471 0.589536
141 0.253694 0.892509 2.519580 0.589720
142 0.252973 0.893088 2.527464 0.590273
143 0.252714 0.893194 2.553902 0.589106
144 0.252190 0.893720 2.536494 0.590457
145 0.251870 0.893352 2.553102 0.588799
146 0.250437 0.893694 2.565141 0.589597
147 0.250066 0.894141 2.575599 0.588553
148 0.249596 0.894273 2.590722 0.588123
149 0.248569 0.894983 2.596031 0.588676
150 0.248096 0.895273 2.602810 0.588860
検証の損失が小さくなったことがないので、あなたのケースは奇妙です。あなたの学習率は疑わしいほど高く、典型的な学習率は約0.001です。グリッド検索でどの範囲の学習率を使用しましたか?
—
ヒュー
これは少し遅れる可能性がありますが、あなたのデータがあなたが思っているものであると確信していますか?特に、これら2つの値は常に一緒に移動する必要があるため、検証の損失が増加している一方で、検証の精度が停滞していることは非常に奇妙です。損失値の減少は、比例して精度が向上することと相まるべきです。あなたは訓練の損失の場合にそれを見ることができます。トレーニングロスが減少するにつれて、精度も向上します。しかし、これはあなたが持っている検証データの場合ではありません。したがって、私は間違いなく検証の損失とACをどのように取得しているのかを調査しました
—
matt_m '19年