サポートベクター回帰を使用して、かなり歪んだデータ(尖度が高い)をモデル化しています。データを直接モデル化しようとしましたが、主にデータの分布が原因であると誤った予測を取得しています。いくつかの外れ値(これは正当なデータポイントです)がSVRトレーニングに影響を及ぼしていると確信しています。また、おそらくクロスバリデーションでも影響があり、現時点では平均二乗誤差を最小限に抑えることでハイパーパラメーターを最適化しています。
SVRを適用する前にデータをスケーリング(たとえば、sqrt関数を使用して外れ値を減らす)したり、別のハイパーパラメーター最小化関数(たとえば、絶対誤差)を使用したりしましたが、より良い結果が得られるようですが、それでもあまり良くありません。誰かが同様の問題に遭遇したかどうか、そして彼らがそれにどのように取り組みましたか?どんな提案や代替方法でも大歓迎です。