当てはめられた曲線の不確実性または信頼性を推定したいと思います。それが何であるかわからないので、私は探している正確な数学的量を意図的に挙げていません。
ここで、(エネルギー)は従属変数(応答)であり、(ボリューム)は独立変数です。ある物質のエネルギー-体積曲線を見つけたいのですが。そこで、量子化学のコンピュータープログラムを使用していくつかの計算を行い、いくつかのサンプルボリューム(プロットの緑の円)のエネルギーを取得しました。V E (V )
次に、これらのデータサンプルをBirch–Murnaghan関数で近似しました: これは4つのパラメータ:。また、これは正しいフィッティング関数であると想定しているため、すべてのエラーはサンプルのノイズに起因するだけです。以下では、フィットされた関数が関数として記述されます。E 0、V 0、B 0、B ' 0(E)V
ここでは、結果を確認できます(最小二乗アルゴリズムに適合)。y軸の変数はで、x軸の変数はです。青い線はフィットで、緑の円はサンプルポイントです。V
この近似曲線の信頼性の測定(ボリュームに応じて)が必要になりました。これは、遷移圧力やエンタルピーなどの追加の量を計算する必要があるためです。
私の直感は、近似曲線が中央で最も信頼できることを教えてくれます。したがって、このスケッチのように、サンプルデータの終わり近くで不確実性(たとえば、不確実性の範囲)が増加するはずです。
しかし、私が探しているこのような測定値は何ですか?どのように計算できますか?
正確には、実際には1つのエラーソースしかありません。計算されたサンプルは、計算上の制限によりノイズが多くなります。したがって、データサンプルの密なセットを計算すると、それらはでこぼこの曲線を形成します。
望ましい不確実性の推定値を見つけるための私の考えは、学校で学習するときにパラメーターに基づいて次の「誤差」を計算することです(不確実性の伝播):
ΔE0、ΔV0、ΔB0ΔB'0
それは許容できるアプローチですか、それとも間違っていますか?
PS:データサンプルと曲線の間の残差の2乗を合計して、ある種の「標準エラー」を取得することもできますが、これはボリュームに依存しません。