これはMath SEからのクロスポストです。
データ(アルゴリズムの実行時間)があり、べき乗則に従っていると思う
とaを決定したい。これまでに行ったことは、log (x )、log (y )を通じて線形回帰(最小二乗)を実行し、その係数からkとaを決定することです。
私の問題は、「絶対ログ」エラーが「ログログデータ」で最小化されているため、元のデータを見ると最小化されるのが商であるということです。
これにより、yの値が大きい場合、絶対誤差が大きくなります。実際の「絶対」エラーを最小限に抑える「べき乗則回帰」を行う方法はありますか?または、少なくともそれを最小化することでより良い仕事をしますか?
例:
赤い曲線はデータセット全体に適合しています。緑の曲線は、最後の21点のみに適合します。
これがプロットのデータです。左側の列は(x軸)の値、右側の列はt(y軸)の値です
1.000000000000000000e+02,1.944999820000248248e-03
1.120000000000000000e+02,1.278203080000253058e-03
1.250000000000000000e+02,2.479853309999952970e-03
1.410000000000000000e+02,2.767649050000500332e-03
1.580000000000000000e+02,3.161272610000196315e-03
1.770000000000000000e+02,3.536506440000266715e-03
1.990000000000000000e+02,3.165302929999711402e-03
2.230000000000000000e+02,3.115432719999944224e-03
2.510000000000000000e+02,4.102446610000356694e-03
2.810000000000000000e+02,6.248937529999807478e-03
3.160000000000000000e+02,4.109296799998674206e-03
3.540000000000000000e+02,8.410178100001530418e-03
3.980000000000000000e+02,9.524117600000181830e-03
4.460000000000000000e+02,8.694799099998817837e-03
5.010000000000000000e+02,1.267794469999898935e-02
5.620000000000000000e+02,1.376997950000031709e-02
6.300000000000000000e+02,1.553864030000227069e-02
7.070000000000000000e+02,1.608576049999897034e-02
7.940000000000000000e+02,2.055535920000011244e-02
8.910000000000000000e+02,2.381920090000448978e-02
1.000000000000000000e+03,2.922614199999884477e-02
1.122000000000000000e+03,1.785056299999610019e-02
1.258000000000000000e+03,3.823622889999569313e-02
1.412000000000000000e+03,3.297452850000013452e-02
1.584000000000000000e+03,4.841355780000071440e-02
1.778000000000000000e+03,4.927822640000271981e-02
1.995000000000000000e+03,6.248602919999939054e-02
2.238000000000000000e+03,7.927740400003813193e-02
2.511000000000000000e+03,9.425949999996419137e-02
2.818000000000000000e+03,1.212073290000148518e-01
3.162000000000000000e+03,1.363937510000141629e-01
3.548000000000000000e+03,1.598689289999697394e-01
3.981000000000000000e+03,2.055201890000262210e-01
4.466000000000000000e+03,2.308686839999722906e-01
5.011000000000000000e+03,2.683506760000113900e-01
5.623000000000000000e+03,3.307920660000149837e-01
6.309000000000000000e+03,3.641307770000139499e-01
7.079000000000000000e+03,5.151283440000042901e-01
7.943000000000000000e+03,5.910637860000065302e-01
8.912000000000000000e+03,5.568920769999863296e-01
1.000000000000000000e+04,6.339683309999486482e-01
1.258900000000000000e+04,1.250584726999989016e+00
1.584800000000000000e+04,1.820368430999963039e+00
1.995200000000000000e+04,2.750779816999994409e+00
2.511800000000000000e+04,4.136365994000016144e+00
3.162200000000000000e+04,5.498797844000023360e+00
3.981000000000000000e+04,7.895301083999981984e+00
5.011800000000000000e+04,9.843239714999981516e+00
6.309500000000000000e+04,1.641506008199996813e+01
7.943200000000000000e+04,2.786652209900000798e+01
1.000000000000000000e+05,3.607965075100003105e+01
1.258920000000000000e+05,5.501840400599996883e+01
1.584890000000000000e+05,8.544515980200003469e+01
1.995260000000000000e+05,1.273598972439999670e+02
2.511880000000000000e+05,1.870695913819999987e+02
3.162270000000000000e+05,3.076423412130000088e+02
3.981070000000000000e+05,4.243025571930002116e+02
5.011870000000000000e+05,6.972544795499998145e+02
6.309570000000000000e+05,1.137165088436000133e+03
7.943280000000000000e+05,1.615926472178005497e+03
1.000000000000000000e+06,2.734825116088002687e+03
1.584893000000000000e+06,6.900561992643000849e+03
(面倒な科学表記のため申し訳ありません)