背景:過去4年間(alexnet後)の多くの近代的な研究は、最先端の分類結果を達成するためにニューラルネットワークの生成的事前トレーニングを使用することから遠ざかっているようです。
例えば、mnistのための上位の結果、ここでは、トップ50の唯一の2紙、RBMのですどちらも、生成モデルを使用しているように見えます。他の48の受賞論文は、RBMや多くの古いニューラルネットワークで使用されているシグモイドとは異なる、より優れた/新しい重みの初期化とアクティベーション関数を見つけることに多大な労力を費やした、異なる識別フィードフォワードアーキテクチャに関するものです。
質問:制限付きボルツマンマシンを使用する現代的な理由はありますか?
そうでない場合、これらのフィードフォワードアーキテクチャに適用できる事実上の変更があり、それらの層のいずれかを生成可能にしますか?
動機:私が見ているのは、私が見ているいくつかのモデル、通常はRBMのバリアントであり、これらの生成層/モデルに明らかな類似の識別的対応物が必ずしも存在しないためです。例えば:
また、これらは2010年、2011年、2009年から明らかに敬意を表してプレアレックスネットでもありました。