x1,…,xkp1,…,pk∑ixi=nai≤xi≤bixi
私は3つの解決策を見ます(切り捨てられていない場合ほどエレガントではありません):
- 承認-拒否。切り捨てられていない多項式からのサンプル。切り捨ての境界に適合する場合はサンプルを受け入れ、そうでない場合は拒否してプロセスを繰り返します。高速ですが、非常に非効率的です。
rtrmnomReject <- function(R, n, p, a, b) {
x <- t(rmultinom(R, n, p))
x[apply(a <= x & x <= b, 1, all) & rowSums(x) == n, ]
}
- nxibi
# single draw from truncated multinomial with a,b truncation points
rtrmnomDirect <- function(n, p, a, b) {
k <- length(p)
repeat {
pp <- p # reset pp
x <- numeric(k) # reset x
repeat {
if (sum(x<b) == 1) { # if only a single category is left
x[x<b] <- x[x<b] + n-sum(x) # fill this category with reminder
break
}
i <- sample.int(k, 1, prob = pp) # sample x[i]
x[i] <- x[i] + 1
if (x[i] == b[i]) pp[i] <- 0 # if x[i] is filled do
# not sample from it
if (sum(x) == n) break # if we picked n, stop
}
if (all(x >= a)) break # if all x>=a sample is valid
# otherwise reject
}
return(x)
}
- X1y=q(Xi−1)Xif(y)/f(Xi−1)Xi−1f(x)∝∏ipxii/xi!qXi−1
step
# draw R values
# 'step' parameter defines magnitude of jumps
# for Meteropolis algorithm
# 'init' is a vector of values to start with
rtrmnomMetrop <- function(R, n, p, a, b,
step = 1,
init = rtrmnomDirect(n, p, a, b)) {
k <- length(p)
if (length(a)==1) a <- rep(a, k)
if (length(b)==1) b <- rep(b, k)
# approximate target log-density
lp <- log(p)
lf <- function(x) {
if(any(x < a) || any(x > b) || sum(x) != n)
return(-Inf)
sum(lp*x - lfactorial(x))
}
step <- max(2, step+1)
# proposal function
q <- function(x) {
idx <- sample.int(k, 2)
u <- sample.int(step, 1)-1
x[idx] <- x[idx] + c(-u, u)
x
}
tmp <- init
x <- matrix(nrow = R, ncol = k)
ar <- 0
for (i in 1:R) {
proposal <- q(tmp)
prob <- exp(lf(proposal) - lf(tmp))
if (runif(1) < prob) {
tmp <- proposal
ar <- ar + 1
}
x[i,] <- tmp
}
structure(x, acceptance.rate = ar/R, step = step-1)
}
X1step
n <- 500
a <- 50
b <- 125
p <- c(1,5,2,4,3)/15
k <- length(p)
x <- rtrmnomMetrop(1e4, n, p, a, b, step = 15)
cmb <- combn(1:k, 2)
par.def <- par(mfrow=c(4,5), mar = c(2,2,2,2))
for (i in 1:k)
hist(x[,i], main = paste0("X",i))
for (i in 1:k)
plot(x[,i], main = paste0("X",i), type = "l", col = "lightblue")
for (i in 1:ncol(cmb))
plot(jitter(x[,cmb[1,i]]), jitter(x[,cmb[2,i]]),
type = "l", main = paste(paste0("X", cmb[,i]), collapse = ":"),
col = "gray")
par(par.def)
p1≠⋯≠pka1=⋯=akb1=…bkaibip1≫p2a1≪a2b1≪b2
npipi
AL、ルキン(2007)。治療配分問題における通常の統計量と幾何確率変数の合計。統計と確率の手紙、77(12)、1312-1321。
AL、ルキン(2008)。均衡配分問題における停止規則:正確な漸近分布。逐次分析、27(3)、277-292。