ベイジアン情報基準における離散またはバイナリパラメータの説明


9

BICは、パラメーターの数に基づいてペナルティを課します。一部のパラメーターが何らかのバイナリインジケーター変数である場合はどうなりますか?これらは完全なパラメーターとしてカウントされますか?しかし、バイナリパラメータを値を取る1つの離散変数に組み合わせることができます。これらはパラメータとしてカウントされるのか、1つのパラメータとしてカウントされるのか?{ 0 1 2 m1 } mm{0,1,...,2m1}m

回答:


3

DIC(逸脱情報基準)が有効な数のパラメーターを ここで、 D θ = 2 log f x | θ および DIC x

pD(x)=E[D(θ)|x]D(E[θ|x])
D(θ)=2logf(x|θ)
p Dx はデータに依存する ことに注意してください。(そこで説明されているよう、DICにも独自の問題があります!)
DIC(x)=pD(x)+E[D(θ)|x]
pD(x)

E[logPy|Model]=ログPy|θPメートルodelθdθ

1
はい、BICは限界尤度の近似値です。ただし、サンプルサイズが無限大になると、「真実」に収束するのは近似値にすぎません。したがって、これは直接ベイジアンではなく(1つには、以前のものを使用しない!)、MCMCとはまったく無関係です(近似がモンテカルロタイプである場合:シミュレーションの数を増やすと、近似が向上します)。DICは、多くの人(B.カーリンおよびD.シュピーゲルハトラーを含む)によりベイジアンであると見なされています
西安

私の質問は、DICが限界モデルの可能性の近似でもあるのかと思います。自分でも読んだ方がいいと思いますが、議論していたので、これを説明すれば答えがより完全になると思いました。ありがとう!
高帯域幅
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.