現在、分類方法を教えています。具体的には、サポートベクターマシン、ニューラルネットワーク、ロジスティック回帰の3つの方法を検討しています。私が理解しようとしているのは、ロジスティック回帰が他の2つよりも優れたパフォーマンスを発揮する理由です。
ロジスティック回帰の私の理解から、アイデアはデータ全体にロジスティック関数を適合させることです。したがって、データがバイナリの場合、ラベル0のすべてのデータは値0(またはそれに近い)にマッピングされ、値1のすべてのデータは値1(またはそれに近い)にマッピングされる必要があります。ロジスティック関数は連続的で滑らかなので、この回帰を実行するには、すべてのデータが曲線に適合する必要があります。決定境界付近のデータポイントに適用される重要性はこれ以上なく、すべてのデータポイントが異なる量で損失に寄与します。
ただし、サポートベクターマシンとニューラルネットワークでは、決定境界付近のデータポイントのみが重要です。データポイントが決定境界の同じ側にある限り、同じ損失をもたらします。
したがって、決定の周りの難しいデータだけに焦点を合わせるのではなく、多くの重要でない(分類しやすい)データに曲線を当てはめようとすると「リソースを浪費する」ため、ロジスティック回帰はサポートベクターマシンまたはニューラルネットワークよりも優れています。境界?