平面上のサンプルの中央値、またはより高い順序のスペースについて受け入れられている定義はありますか?


33

もしそうなら、何?そうでない場合は、なぜですか?

ライン上のサンプルの場合、中央値は合計絶対偏差を最小化します。定義をR2などに拡張するのは自然に思えますが、私はそれを見たことがありません。しかし、その後、私は長い間左のフィールドに出てきました。


回答:


19

多変量中央値について受け入れられている定義があるかどうかはわかりません。私がよく知っているのは、Ojaの中央値ポイントです。これは、ポイントのサブセット上に形成されるシンプレックスのボリュームの合計を最小化します。(技術的な定義については、リンクを参照してください。)

更新:上記のOjaの定義について参照されているサイトには、多変量中央値の多くの定義を網羅した素晴らしい論文もあります。


1
素敵なリファレンス:ありがとう。ここに記載されているすべてを包括的にカバーしています。
whuber

同じWebサイトには、htmlの単純な概要も含まれています。cgm.cs.mcgill.ca
Aditya

15

@Arsはそこには受け入れられている定義はありません(これは良い点である)と述べました。分位数を一般化する方法の一般的な代替ファミリがありRdます。最も重要なことは次のとおりです。

  • 分位プロセス一般レッツの経験的尺度(=の観測の割合である Aを)。次に、と Aでのボレル集合のも選ばれたサブセットのR D λ実数値尺度は、あなたが経験的分位関数を定義することができます。Pn(A)AARdλ

    Un(t)=inf(λ(A):Pn(A)tAA)

    Suppose you can find one At that gives you the minimum. Then the set (or an element of the set) A1/2ϵA1/2+ϵ gives you the median when ϵ is made small enough. The definition of the median is recovered when using A=(],x]xR) and λ(],x])=x. Ars answer falls into that framework I guess... tukey's half space location may be obtained using A(a)=(Hx=(tRd:a,tx) and λ(Hx)=x (with xR, aRd).

  • variational definition and M-estimation The idea here is that the α-quantile Qα of a random variable Y in R can be defined through a variational equality.

    • The most common definition is using the quantile regression function ρα (also known as pinball loss, guess why ? ) Qα=arginfxRE[ρα(Yx)]. The case α=1/2 gives ρ1/2(y)=|y| and you can generalize that to higher dimension using l1@Srikant Answerで行われた距離。これは理論上の中央値ですが、期待値を経験的期待値(平均)に置き換えると経験的中央値が得られます。

    • Qα=Argsups(sαf(s)) where f(s)=12E[|sY||Y|+s] for sR. He gives a lot of deep reasons for that (see the paper ;)). Generalizing this to higher dimensions require working with a vectorial α and replacing sα by s,α but you can take α=(1/2,,1/2).

  • Partial ordering You can generalize the definition of quantiles in Rd as soon as you can create a partial order (with equivalence classes).

Obviously there are bridges between the different formulations. They are not all obvious...


Nice answer, Robin!
ars

12

There are distinct ways to generalize the concept of median to higher dimensions. One not yet mentioned, but which was proposed long ago, is to construct a convex hull, peel it away, and iterate for as long as you can: what's left in the last hull is a set of points that are all candidates to be "medians."

"Head-banging" is another more recent attempt (c. 1980) to construct a robust center to a 2D point cloud. (The link is to documentation and software available at the US National Cancer Institute.)

The principal reason why there are multiple distinct generalizations and no one obvious solution is that R1 can be ordered but R2, R3, ... cannot be.


Any measure that coincides with the usual median when restricted to R1 is a candidate generalization. There must be a lot of them.
phv3773

phv:> one can ask for 'the' generalization to preserve (in higher dimensions) some of the interesting properties of the median. This severly limits the number of candidates (see the commenting after Srikant's answer below)
user603

@Whuber:> then notion of ordering can be generalized to R^n for unimodal distributions (see my answer below).
user603

@kwak: could you elaborate a little? The usual mathematical definition of an ordering of a space is independent of any kind of probability distribution, so you must implicitly have some additional assumptions in mind.
whuber

1
@Whuber:> You state: "R1 can be ordered but R2, R3, ... cannot be". R2,..,R3 can be ordered in many ways by mapping from Rn to R . One such way is the tukey depth. It has many important properties (robustness to some extend, non parametric, invariance,...) but these only hold for the case of unimodal distributions. Let me know if you want more details.
user603


6

The Tukey halfspace median can be extended to >2 dimensions using DEEPLOC, an algorithm due to Struyf and Rousseeuw; see here for details.

The algorithm is used to approximate the point of greatest depth efficiently; naive methods which attempt to determine this exactly usually run afoul of (the computational version of) "the curse of dimensionality", where the runtime required to calculate a statistic grows exponentially with the number of dimensions of the space.



0

I do not know if any such definition exists but I will try and extend the standard definition of the median to R2. I will use the following notation:

X, Y: the random variables associated with the two dimensions.

mx, my: the corresponding medians.

f(x,y): the joint pdf for our random variables

To extend the definition of the median to R2, we choose mx and my to minimize the following:

E(|(x,y)(mx,my)|

The problem now is that we need a definition for what we mean by:

|(x,y)(mx,my)|

The above is in a sense a distance metric and several possible candidate definitions are possible.

Eucliedan Metric

|(x,y)(mx,my)|=(xmx)2+(ymy)2

Computing the median under the euclidean metric will require computing the expectation of the above with respect to the joint density f(x,y).

Taxicab Metric

|(x,y)(mx,my)|=|xmx|+|ymy|

Computing the median in the case of the taxicab metric involves computing the median of X and Y separately as the metric is separable in x and y.


Srikant:> No. The definition has to have two important feature of the univariate median. a) Invariant to monotone transformation of the data, b) robust to contamination by outliers. None of the extentions you propose have these. The Tukey depth has these qualities.
user603

@kwak What you say makes sense.

@Srikant:> Check the R&S paper cited by Gary Campbell above ;). Best,
user603

@kwak On thinking some more, the taxicab metric does have the features you mentioned as it basically reduces to univariate medians. no?

2
@Srikant:> there are no incorrect answer to phv's questions because there are no 'good answers' either; this area of research is still under development. I simply wanted to point out why it is still an open problem.
user603
弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.