あなたは、個人がグループ内に配置されているデータの単一断面(学校内などの生徒を)持っていて、フォームのモデルを推定したいと仮定し、個々のレベル特性とのベクトルである定数を。Y_i = a + B*X_i
X
a
この場合、観測されていないグループ間不均一B
性が、対象の独立変数と相関しているため、ポイント推定値とそのSEにバイアスをかけていると仮定します。
1つのオプションは、グループ(学校)によってSEをクラスター化することです。もう1つは、グループFEを含めることです。別の方法は両方を使用することです。これらのオプションを選択する際に考慮すべきことは何ですか?グループごとにSEをクラスタ化し、グループFEを使用する理由は特に不明です。私の特定のケースでは、35のグループと、各グループ内にネストされた5,000人の個人がいます。このpdfの説明に従いましたが、クラスター化されたSEと固定効果の両方を使用する理由と時期についてはあまり明確ではありません。
(マルチレベルモデルに適合することを提案する代わりに、クラスター化されたSEとFEの長所と短所について議論してください。)