GLMフレームワーク内で、どの回帰タイプ(幾何、ポアソン、負の二項)をカウントデータと共に使用するのが適切な場合、自分でレイアウトしようとしています(8つのGLM分布のうち3つだけがカウントデータに使用されますが、負の二項分布とポアソン分布を中心に読みました)。
カウントデータにポアソンvs幾何vs負の二項GLMを使用する場合
これまでのところ、次のロジックがあります:データをカウントしますか?はいの場合、平均と分散は等しくありませんか?はいの場合、負の二項回帰。いいえの場合、ポアソン回帰。ゼロインフレはありますか?はいの場合、ゼロ膨張ポアソンまたはゼロ膨張負の二項。
質問1いつ使用するかについて明確な指示がないようです。その決定を知らせる何かがありますか?私が理解していることから、ZIPに切り替えると、平均分散が等しいという仮定が緩和されるため、再びNBとかなり似たものになります。
質問2幾何学ファミリをこれに当てはめる場所、または回帰で幾何学ファミリを使用するかどうかを決定する際に、どのような種類の質問をデータに求めるべきですか?
質問3負の二項分布とポアソン分布を常に交換しているが、幾何学的ではない人がいるので、いつ使用するかについて明確に異なるものがあると推測しています。もしそうなら、それは何ですか?
PS 議論のために人々がそれをコメント/微調整したい場合、私は現在の理解の図(編集可能)を(おそらくは簡略化して)作成しました。