可能であれば例を使って、回帰分析と曲線近似(線形および非線形)の実際の違いを説明してもらえますか?
どちらも2つの変数間の関係(従属と独立)を見つけようとし、提案されているモデルに関連するパラメーター(または係数)を決定しようとするようです。たとえば、次のようなデータセットがある場合:
Y = [1.000 1.000 1.000 0.961 0.884 0.000]
X = [1.000 0.063 0.031 0.012 0.005 0.000]
誰もがこれら2つの変数間の相関式を提案できますか?これら2つのアプローチの違いを理解するのが困難です。他のデータセットで答えをサポートしたい場合、それは適合しにくいと思われるので大丈夫です(おそらく私だけのために)。
上記のデータセットは、受信者動作特性(ROC)曲線のおよび軸を表します。ここで、は真陽性率(TPR)、は偽陽性率(FPR)です。y x
特定のFPR(またはその逆)のTPRを推定するために、これらのポイントの中で、曲線を近似するか、元の質問に従って回帰分析を行っていますが、まだ定かではありません。
まず、2つの独立変数(TPRとFPR)の間にこのような曲線近似関数を見つけることは科学的に受け入れられますか?
第二に、実際のネガティブなケースと実際のポジティブなケースの分布が正規でないことを知っている場合、そのような関数を見つけることは科学的に受け入れられますか?