私は非線形モデルを持っています。ここで、Φは標準正規分布の累積分布関数であり、fは非線形です(以下を参照)。このモデルとパラメーターaの適合度をデータ(x 1、y 1)、(x 2、y 2)、… 、(x n、y n)でテストしたい、検索するために使用最尤推定を持った後。適切なテストは何でしょうか?このテストを使用して、不良適合を不良としてラベル付けし、さらにデータを収集する必要があるかどうかを判断します。
私は使用適合度のその対応する試験で、飽和モデルに対してこのモデルを比較して逸脱を用いに見てきた分布。これは適切でしょうか?私が逸脱について読んだことのほとんどは、それをGLMに適用していますが、それは私が持っているものではありません。逸脱度テストが適切である場合、テストを有効にするためにどのような仮定を保持する必要がありますか?
更新:のためのx>1、>0の場合にこのことができます。