私はG(一般化線形モデル)でglmsを実行しています。私はpvalueを知っていると思いました-glmの要約を呼び出しても、モデル全体を表すオーバーライドpvalueが得られないことがわかるまでは、少なくとも線形モデルの場合はそうではありません。
これは、係数の表の一番上にある切片のp値として指定されているかどうか疑問に思っています。したがって、次の例では、Wind.speed..knotsとcanopy_densityはモデルにとって重要である可能性がありますが、モデル自体が重要であるかどうかをどのように知ることができますか?これらの値を信頼するかどうかはどうすればわかりますか?(切片)のPr(> | z |)がモデルの重要性を表していると思いますか?このモデルは重要な人々ですか??? ありがとう!
2項式族でF検定を実行することは不適切であるというエラーメッセージが表示されるため、F検定を実行してもp値は得られないことに注意してください。
Call:
glm(formula = Empetrum_bin ~ Wind.speed..knots. + canopy_density,
family = binomial, data = CAIRNGORM)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.2327 -0.7167 -0.4302 -0.1855 2.3194
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.8226 1.2030 1.515 0.1298
Wind.speed..knots. -0.5791 0.2628 -2.203 0.0276 *
canopy_density -2.5733 1.1346 -2.268 0.0233 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 59.598 on 58 degrees of freedom
Residual deviance: 50.611 on 56 degrees of freedom
(1 observation deleted due to missingness)
AIC: 56.611