回答:
本当に専門家ではありませんが、この質問にはしばらく回答がなかったので、答えを試してみます。GLMとタイムシリーズモデル、およびボックスとジェンキンスの3つの違いを考えることができます。
1)GLMは、変数Yを他のいくつかの変数Xの関数としてモデル化することです(Y = f(X))。時系列モデルでは、(ほとんど?)変数Yをそれ自体の関数としてモデル化していますが、前のタイムステップから(Y(t)= f(Y(t-1)、Y(t-2)、...) );
2)前のポイントに関連:GLMは入力共変量の自己相関自体を考慮しませんが、ARIMAのような時系列モデルは本質的に自己相関です。
3)自己回帰モデルは、残差が平均0で正規であるという仮定に基づいていると思いますが、GLMは、応答変数のより複雑なデータ構造を受け入れ、おそらく非正規分布(ガンマ、ポアソンなど)を持ちます。
GLMを使用する場合と時系列を使用する場合のルールはありますか?モデル時間をランダムな効果として考慮しているのでない限り、GLMはモデル時系列への間違ったアプローチにすぎないと思います。