フリッツ、モリス、及びRichler(2011;下記参照)によれば、式を使用してマン・ホイットニーU検定のための効果の大きさとして算出することができる これは便利であることを私、他の機会にもを報告します。効果の大きさの尺度に加えて、の信頼区間を報告したいと思います。
私の質問は次のとおりです。
- ピアソンのrのようにrの信頼区間を計算できますが、ノンパラメトリック検定の効果サイズの尺度として使用されますか?
- 片側検定と両側検定の場合、どの信頼区間を報告する必要がありますか?
2番目の質問に関する編集:「片側検定と両側検定の場合、どの信頼区間を報告する必要がありますか?」
私は、私見がこの質問に答えるかもしれないいくつかの情報を見つけました。「両側の信頼限界は信頼区間を形成しますが、片側の信頼限界は信頼限界の下限または上限と呼ばれます。」(http://en.wikipedia.org/wiki/Confidence_interval)。この情報から、有意性検定(たとえば、)が片側か両側かは主な問題ではなく、影響の大きさのCIに関してどのような情報に関心があるかを結論付けます。私の結論(あなたが同意しない場合は私を修正してください):
- 両側CI 上限と下限に関心(結果として、両側CIが0を伴う可能性がありますが、有意性の片側検定はp <.05でしたが、特に値が。 05.)
- 片側の「CI」上限または下限にのみ関心がある(理論的推論による); ただし、これは必ずしも有向仮説をテストした後の主な関心事ではありません。エフェクトサイズの可能な範囲に焦点が当てられている場合、両面CIは完全に適切です。正しい?
上記の記事からのMann-Whitney検定の効果サイズの見積もりに関するFritz、Morris、&Richler(2011)の文章の一節については、以下を参照してください。
「ここで説明したエフェクトサイズの推定値のほとんどは、データが正規分布を持っていることを前提としています。ただし、一部のデータはパラメトリックテストの要件を満たしていません。通常は、Mann-WhitneyやWilcoxon検定などのノンパラメトリック統計検定を使用しますこれらの検定の有意性は、通常、標本サイズが小さすぎない場合の検定統計の分布を分布に近似することで評価されます。これらのテストを実行するSPSSなどのパッケージは、または値に加えて適切な値を報告します;手動で計算することもできます(例:Siegel&Castellan、1988)。値は、次のような、効果の大きさを計算するために使用され得るコーエン(1988)によって提案されました。Cohenのrに関するガイドラインでは、大きな効果は0.5、中程度の効果は.3、小さな効果は.1です(Coolican、2009、p。395)。、を計算するのは簡単です、又はこれらからZ値ので 、R = Z および r2
これらの効果サイズの推定値は、式にNが含まれているにもかかわらず、サンプルサイズに依存しません。これは、zがサンプルサイズに敏感だからです。Nの関数で除算すると、結果の効果サイズの推定値からサンプルサイズの効果が削除されます。 "(p。12)