私はGAMをますます使用しています。さまざまなコンポーネント(平滑化パラメーターの選択、さまざまなスプラインベース、平滑項のp値)の参照を提供しようとすると、それらはすべて1人の研究者(イギリスのバース大学のサイモンウッド)からのものです。
彼はmgcv
R のメンテナーでもあり、彼は自分の仕事を実装しています。 mgcv
非常に複雑ですが、非常にうまく機能します。
確かに古いものがあります。元のアイデアはHastie&Tibshiraniの功績によるものであり、2003年にRuppertらによって非常に古い教科書が執筆されました。
申請者として、私は学術統計学者の間で時代精神を感じていない。彼の作品はどのように見られていますか?1人の研究者が1つの分野でこれほど多くのことを行ったことは少し奇妙ですか?それとも、中に入れられないためにそれほど気づかない他の仕事がありmgcv
ますか?GAMがそれほど使用されているとは思いませんが、この資料は統計トレーニングを受けた人々にとっては合理的にアクセス可能であり、ソフトウェアは非常によく開発されています。「裏話」の多くはありますか?
統計ジャーナルからのパースペクティブの断片や他の同様のものの推奨は高く評価されるでしょう。