あなたの質問への直接的な答えは、あなたが書いた最後のモデル、
anova(lmer(y ~ a*b*c +(1|subject) + (1|a:subject) + (1|b:subject) + (1|c:subject) + 
           (1|a:b:subject) + (1|a:c:subject) + (1|b:c:subject), d))
私は「原則として」正しいと信じていますが、実際の実行では常にうまく機能するとは思われない奇妙なパラメーター化です。
このモデルから得られる出力が出力と一致しaov()ない理由については、2つの理由があると思います。
- 単純にシミュレートされたデータセットは病理学的です。最適なモデルは負の分散成分を意味するものであり、混合モデルlmer()(および他のほとんどの混合モデルプログラム)はこれを許可しません。
- 病理学的でないデータセットを使用しても、上記のようにモデルを設定する方法は、実際には必ずしもうまく機能しているようには見えませんが、理由はよくわかりません。それはまた、私の意見では一般的に奇妙ですが、それは別の話です。
最初に、最初の2因子分散分析の例で私が好むパラメーター化を示します。データセットdがロードされていると仮定します。あなたのモデル(私がダミーからコントラストコードに変更したことに注意してください)は:
options(contrasts=c("contr.sum","contr.poly"))
mod1 <- lmer(y ~ a*b+(1|subject) + (1|a:subject) + (1|b:subject),
         data = d[d$c == "1",])
anova(mod1)
# Analysis of Variance Table
#     Df  Sum Sq Mean Sq F value
# a    1 2.20496 2.20496  3.9592
# b    1 0.13979 0.13979  0.2510
# a:b  1 1.23501 1.23501  2.2176
これは、aov()出力と一致するという点で、ここでうまくいきました。私が好むモデルには2つの変更が含まれます。R因子オブジェクトを操作しないように因子を手動でコントラストコーディングし(100%の場合に行うことをお勧めします)、ランダム効果を別の方法で指定します。
d <- within(d, {
  A <- 2*as.numeric(paste(a)) - 3
  B <- 2*as.numeric(paste(b)) - 3
  C <- 2*as.numeric(paste(c)) - 3
})
mod2 <- lmer(y ~ A*B + (1|subject)+(0+A|subject)+(0+B|subject),
             data = d[d$c == "1",])
anova(mod2)
# Analysis of Variance Table
# Df  Sum Sq Mean Sq F value
# A    1 2.20496 2.20496  3.9592
# B    1 0.13979 0.13979  0.2510
# A:B  1 1.23501 1.23501  2.2176
logLik(mod1)
# 'log Lik.' -63.53034 (df=8)
logLik(mod2)
# 'log Lik.' -63.53034 (df=8)
2つのアプローチは、単純な双方向の問題では完全に同等です。次に、3方向の問題に移ります。先ほど、あなたが提供したサンプルデータセットは病的であると述べました。したがって、サンプルデータセットを扱う前に、まず実際の分散コンポーネントモデルからデータセットを生成します(つまり、ゼロ以外の分散コンポーネントが真のモデルに組み込まれている場合)。最初に、私の推奨するパラメーター化が、提案したパラメーター化よりもうまく機能しているように見えることを示します。それから私はない分散成分を推定する別の方法を説明しますない彼らは非負でなければならないことを課しています。その後、元のサンプルデータセットの問題を確認できるようになります。
新しいデータセットは、50のサブジェクトを持つことを除いて、構造は同じです。
set.seed(9852903)
d2 <- expand.grid(A=c(-1,1), B=c(-1,1), C=c(-1,1), sub=seq(50))
d2 <- merge(d2, data.frame(sub=seq(50), int=rnorm(50), Ab=rnorm(50),
  Bb=rnorm(50), Cb=rnorm(50), ABb=rnorm(50), ACb=rnorm(50), BCb=rnorm(50)))
d2 <- within(d2, {
  y <- int + (1+Ab)*A + (1+Bb)*B + (1+Cb)*C + (1+ABb)*A*B +
    (1+ACb)*A*C + (1+BCb)*B*C + A*B*C + rnorm(50*2^3)
  a <- factor(A)
  b <- factor(B)
  c <- factor(C)
})
照合するF比は次のとおりです。
aovMod1 <- aov(y ~ a*b*c + Error(factor(sub)/(a*b*c)), data = d2)
tab <- lapply(summary(aovMod1), function(x) x[[1]][1,2:4])
do.call(rbind, tab)
#                          Sum Sq Mean Sq F value
# Error: factor(sub)       439.48    8.97        
# Error: factor(sub):a     429.64  429.64  32.975
# Error: factor(sub):b     329.48  329.48  27.653
# Error: factor(sub):c     165.44  165.44  17.924
# Error: factor(sub):a:b   491.33  491.33  49.694
# Error: factor(sub):a:c   305.46  305.46  41.703
# Error: factor(sub):b:c   466.09  466.09  40.655
# Error: factor(sub):a:b:c 392.76  392.76 448.101
これが2つのモデルです。
mod3 <- lmer(y ~ a*b*c + (1|sub)+(1|a:sub)+(1|b:sub)+(1|c:sub)+
  (1|a:b:sub)+(1|a:c:sub)+(1|b:c:sub), data = d2)
anova(mod3)
# Analysis of Variance Table
#       Df Sum Sq Mean Sq F value
# a      1  32.73   32.73  34.278
# b      1  21.68   21.68  22.704
# c      1  12.53   12.53  13.128
# a:b    1  60.93   60.93  63.814
# a:c    1  50.38   50.38  52.762
# b:c    1  57.30   57.30  60.009
# a:b:c  1 392.76  392.76 411.365
mod4 <- lmer(y ~ A*B*C + (1|sub)+(0+A|sub)+(0+B|sub)+(0+C|sub)+
  (0+A:B|sub)+(0+A:C|sub)+(0+B:C|sub), data = d2)
anova(mod4)
# Analysis of Variance Table
#       Df Sum Sq Mean Sq F value
# A      1  28.90   28.90  32.975
# B      1  24.24   24.24  27.653
# C      1  15.71   15.71  17.924
# A:B    1  43.56   43.56  49.694
# A:C    1  36.55   36.55  41.703
# B:C    1  35.63   35.63  40.655
# A:B:C  1 392.76  392.76 448.101
logLik(mod3)
# 'log Lik.' -984.4531 (df=16)
logLik(mod4)
# 'log Lik.' -973.4428 (df=16)
ご覧のとおり、2番目の方法のみがからの出力に一致しますaov()が、最初の方法は少なくともおおざっぱです。2番目の方法でも、対数尤度が高くなります。これらの2つの方法が異なる結果をもたらす理由はわかりません。繰り返しますが、これらは「原則として」同等であると思いますが、数値的または計算上の理由によるのかもしれません。あるいは、私は間違っているかもしれませんし、それらは原則的にも同等ではありません。
ここで、従来の分散分析の考え方に基づいて分散成分を推定する別の方法を示します。基本的に、私たちはあなたの設計に期待される平均二乗方程式を取り、平均二乗の観測値を代入し、分散成分を解きます。予想平均平方を得るために、我々はと呼ばれる、私が数年前に書いたRの機能を使用するEMS()文書化され、HERE。以下では、関数がすでにロードされていると想定しています。
# prepare coefficient matrix
r <- 1 # number of replicates
s <- 50 # number of subjects
a <- 2 # number of levels of A
b <- 2 # number of levels of B
c <- 2 # number of levels of C
CT <- EMS(r ~ a*b*c*s, random="s")
expr <- strsplit(CT[CT != ""], split="")
expr <- unlist(lapply(expr, paste, collapse="*"))
expr <- sapply(expr, function(x) eval(parse(text=x)))
CT[CT != ""] <- expr
CT[CT == ""] <- 0
mode(CT) <- "numeric"
# residual variance and A*B*C*S variance are confounded in
# this design, so remove the A*B*C*S variance component
CT <- CT[-15,-2]
CT
#        VarianceComponent
# Effect  e b:c:s a:c:s a:b:s a:b:c c:s b:s a:s b:c a:c a:b s   c   b   a
#   a     1     0     0     0     0   0   0   4   0   0   0 0   0   0 200
#   b     1     0     0     0     0   0   4   0   0   0   0 0   0 200   0
#   c     1     0     0     0     0   4   0   0   0   0   0 0 200   0   0
#   s     1     0     0     0     0   0   0   0   0   0   0 8   0   0   0
#   a:b   1     0     0     2     0   0   0   0   0   0 100 0   0   0   0
#   a:c   1     0     2     0     0   0   0   0   0 100   0 0   0   0   0
#   b:c   1     2     0     0     0   0   0   0 100   0   0 0   0   0   0
#   a:s   1     0     0     0     0   0   0   4   0   0   0 0   0   0   0
#   b:s   1     0     0     0     0   0   4   0   0   0   0 0   0   0   0
#   c:s   1     0     0     0     0   4   0   0   0   0   0 0   0   0   0
#   a:b:c 1     0     0     0    50   0   0   0   0   0   0 0   0   0   0
#   a:b:s 1     0     0     2     0   0   0   0   0   0   0 0   0   0   0
#   a:c:s 1     0     2     0     0   0   0   0   0   0   0 0   0   0   0
#   b:c:s 1     2     0     0     0   0   0   0   0   0   0 0   0   0   0
#   e     1     0     0     0     0   0   0   0   0   0   0 0   0   0   0
# get mean squares
(MSmod <- summary(aov(y ~ a*b*c*factor(sub), data=d2)))
#                   Df Sum Sq Mean Sq
# a                  1  429.6   429.6
# b                  1  329.5   329.5
# c                  1  165.4   165.4
# factor(sub)       49  439.5     9.0
# a:b                1  491.3   491.3
# a:c                1  305.5   305.5
# b:c                1  466.1   466.1
# a:factor(sub)     49  638.4    13.0
# b:factor(sub)     49  583.8    11.9
# c:factor(sub)     49  452.2     9.2
# a:b:c              1  392.8   392.8
# a:b:factor(sub)   49  484.5     9.9
# a:c:factor(sub)   49  358.9     7.3
# b:c:factor(sub)   49  561.8    11.5
# a:b:c:factor(sub) 49   42.9     0.9
MS <- MSmod[[1]][,"Mean Sq"]
# solve
ans <- solve(CT, MS)
cbind(rev(ans[c(grep("e",names(ans)),grep("s",names(ans)))])/
        c(1,2,2,2,4,4,4,1))
# s     1.0115549
# a:s   1.5191114
# b:s   1.3797937
# c:s   1.0441351
# a:b:s 1.1263331
# a:c:s 0.8060402
# b:c:s 1.3235126
# e     0.8765093
summary(mod4)
# Random effects:
#  Groups   Name        Variance Std.Dev.
#  sub      (Intercept) 1.0116   1.0058  
#  sub.1    A           1.5191   1.2325  
#  sub.2    B           1.3798   1.1746  
#  sub.3    C           1.0441   1.0218  
#  sub.4    A:B         1.1263   1.0613  
#  sub.5    A:C         0.8060   0.8978  
#  sub.6    B:C         1.3235   1.1504  
#  Residual             0.8765   0.9362  
# Number of obs: 400, groups:  sub, 50
では、元の例に戻りましょう。照合しようとしているF比は次のとおりです。
aovMod2 <- aov(y~a*b*c+Error(subject/(a*b*c)), data = d)
tab <- lapply(summary(aovMod2), function(x) x[[1]][1,2:4])
do.call(rbind, tab)
#                       Sum Sq Mean Sq F value
# Error: subject       13.4747  1.2250        
# Error: subject:a      1.4085  1.4085  1.2218
# Error: subject:b      3.1180  3.1180  5.5487
# Error: subject:c      6.3809  6.3809  5.2430
# Error: subject:a:b    1.5706  1.5706  2.6638
# Error: subject:a:c    1.0907  1.0907  1.5687
# Error: subject:b:c    1.4128  1.4128  2.3504
# Error: subject:a:b:c  0.1014  0.1014  0.1149
これが2つのモデルです。
mod5 <- lmer(y ~ a*b*c + (1|subject)+(1|a:subject)+(1|b:subject)+
  (1|c:subject)+(1|a:b:subject)+(1|a:c:subject)+(1|b:c:subject),
  data = d)
anova(mod5)
# Analysis of Variance Table
#       Df Sum Sq Mean Sq F value
# a      1 0.8830  0.8830  1.3405
# b      1 3.1180  3.1180  4.7334
# c      1 3.8062  3.8062  5.7781
# a:b    1 1.5706  1.5706  2.3844
# a:c    1 0.9620  0.9620  1.4604
# b:c    1 1.4128  1.4128  2.1447
# a:b:c  1 0.1014  0.1014  0.1539
mod6 <- lmer(y ~ A*B*C + (1|subject)+(0+A|subject)+(0+B|subject)+
  (0+C|subject)+(0+A:B|subject)+(0+A:C|subject)+
  (0+B:C|subject), data = d)
anova(mod6)
# Analysis of Variance Table
#       Df Sum Sq Mean Sq F value
# a      1 0.8830  0.8830  1.3405
# b      1 3.1180  3.1180  4.7334
# c      1 3.8062  3.8062  5.7781
# a:b    1 1.5706  1.5706  2.3844
# a:c    1 0.9620  0.9620  1.4604
# b:c    1 1.4128  1.4128  2.1447
# a:b:c  1 0.1014  0.1014  0.1539
logLik(mod5)
# 'log Lik.' -135.0351 (df=16)
logLik(mod6)
# 'log Lik.' -134.9191 (df=16)
この場合、2つのモデルのログの尤度はわずかに高くなりますが、2つのモデルは基本的に同じ結果になります。どちらの方法も一致しませんaov()。ただし、分散コンポーネントを負でないように制約しないANOVAプロシージャを使用して、分散コンポーネントを解決するときに得られる結果を見てみましょう(ただし、連続予測子がなくバランスの取れた設計でのみ使用できます。欠けているデータ;古典的な分散分析の仮定)。
# prepare coefficient matrix
r <- 1 # number of replicates
s <- 12 # number of subjects
a <- 2 # number of levels of A
b <- 2 # number of levels of B
c <- 2 # number of levels of C
CT <- EMS(r ~ a*b*c*s, random="s")
expr <- strsplit(CT[CT != ""], split="")
expr <- unlist(lapply(expr, paste, collapse="*"))
expr <- sapply(expr, function(x) eval(parse(text=x)))
CT[CT != ""] <- expr
CT[CT == ""] <- 0
mode(CT) <- "numeric"
# residual variance and A*B*C*S variance are confounded in
# this design, so remove the A*B*C*S variance component
CT <- CT[-15,-2]
# get mean squares
MSmod <- summary(aov(y ~ a*b*c*subject, data=d))
MS <- MSmod[[1]][,"Mean Sq"]
# solve
ans <- solve(CT, MS)
cbind(rev(ans[c(grep("e",names(ans)),grep("s",names(ans)))])/
        c(1,2,2,2,4,4,4,1))
# s      0.04284033
# a:s    0.03381648
# b:s   -0.04004005
# c:s    0.04184887
# a:b:s -0.03657940
# a:c:s -0.02337501
# b:c:s -0.03514457
# e      0.88224787
summary(mod6)
# Random effects:
#  Groups    Name        Variance  Std.Dev. 
#  subject   (Intercept) 7.078e-02 2.660e-01
#  subject.1 A           6.176e-02 2.485e-01
#  subject.2 B           0.000e+00 0.000e+00
#  subject.3 C           6.979e-02 2.642e-01
#  subject.4 A:B         1.549e-16 1.245e-08
#  subject.5 A:C         4.566e-03 6.757e-02
#  subject.6 B:C         0.000e+00 0.000e+00
#  Residual              6.587e-01 8.116e-01
# Number of obs: 96, groups:  subject, 12
これで、元の例について病理学的なものを確認できます。最も適合するモデルは、ランダムな分散成分のいくつかが負であることを意味するモデルです。しかしlmer()(および他のほとんどの混合モデルプログラム)、分散コンポーネントの推定値が負にならないように制約されます。もちろん、分散が真に負になることは決してないため、これは一般に賢明な制約と見なされます。ただし、この制約の結果、混合モデルは、負のクラス内相関を特徴とするデータセット、つまり同じクラスターからの観測が少ないデータセットを正確に表すことができません。(それ以上ではなく)データセットからランダムに描画された観測値と平均的に類似しており、その結果、クラスター内の分散がクラスター間の分散を大幅に上回ります。そのようなデータセットは、現実の世界で偶然目にする(または誤ってシミュレートする!)完全に妥当なデータセットですが、負の分散コンポーネントを意味するため、分散コンポーネントモデルではうまく説明できません。ただし、ソフトウェアで許可されている場合は、そのようなモデルで「無意味に」記述できます。aov()それを許可します。lmer()ではない。
               
              
y ~ a*b + (1 + a*b|subject), d[d$c == "1",]か?または、おそらく何か不足していますか?