リンクするスライドはやや混乱を招き、手順を省略していくつかのタイプミスを犯しますが、最終的には正しいものです。最初に質問2、次に1に答え、最後に対称変換。A(u)=∫u−∞1[V(θ)]1/3dθA(u)=∫u−∞1[V(θ)]1/3dθ
質問2.をランダム変数のサイズのサンプルの平均として分析してい。科学では常に同じ分布をサンプリングして平均を取るため、これは重要な量です。が真の平均どれだけ近いかを知りたいです。中央極限定理は、にとして収束すると言いますが、分散と歪度を知りたいと思い。ˉXX¯NNX1,...,XNX1,...,XNˉXX¯μμμμN→∞N→∞ˉXX¯
質問1.テイラー級数の近似は間違っていませんが、スライドと同じ結論を得るには、対およびべき乗を追跡することに注意する必要があります。の定義と中心モーメントから、の公式を導き出し。ˉXX¯XiXiNNˉXX¯XiXiκ3(h(ˉX))κ3(h(X¯))
ˉX=1N∑Ni=1XiX¯=1N∑Ni=1Xi
E[Xi]=μE[Xi]=μ
V(Xi)=E[(Xi−μ)2]=σ2V(Xi)=E[(Xi−μ)2]=σ2
κ3(Xi)=E[(Xi−μ)3]κ3(Xi)=E[(Xi−μ)3]
さて、の中心的な瞬間:ˉXX¯
E[ˉX]=1N∑Ni=1E[Xi]=1N(Nμ)=μE[X¯]=1N∑Ni=1E[Xi]=1N(Nμ)=μ
V(ˉX)=E[(ˉX−μ)2]=E[((1NN∑i=1Xi)−μ)2]=E[(1NN∑i=1(Xi−μ))2]=1N2(NE[(Xi−μ)2]+N(N−1)E[Xi−μ]E[Xj−μ])=1Nσ2V(X¯)=E[(X¯−μ)2]=E[((1N∑i=1NXi)−μ)2]=E[(1N∑i=1N(Xi−μ))2]=1N2(NE[(Xi−μ)2]+N(N−1)E[Xi−μ]E[Xj−μ])=1Nσ2
および以来、最後のステップが続きます。これはの最も簡単な派生ではなかったかもしれませんが、およびを見つけるために必要なプロセスと同じです、合計の積を分割し、異なる変数のべき乗を持つ項の数をカウントします。上記の場合、存在した形状のものであった用語及びの形の点。E[Xi−μ]=0E[Xi−μ]=0E[(Xi−μ)2]=σ2E[(Xi−μ)2]=σ2V(ˉX)V(X¯)κ3(ˉX)κ3(X¯)κ3(h(ˉX))κ3(h(X¯))NN(Xi−μ)2(Xi−μ)2N(N−1)N(N−1)(Xi−μ)(Xj−μ)(Xi−μ)(Xj−μ)
κ3(ˉX)=E[(ˉX−μ)3)]=E[((1NN∑i=1Xi)−μ)3]=E[(1NN∑i=1(Xi−μ))3]=1N3(NE[(Xi−μ)3]+3N(N−1)E[(Xi−μ)E[(Xj−μ)2]+N(N−1)(N−2)E[(Xi−μ)]E[(Xj−μ)]E[(Xk−μ)]=1N2E[(Xi−μ)3]=κ3(Xi)N2κ3(X¯)=E[(X¯−μ)3)]=E[((1N∑i=1NXi)−μ)3]=E[(1N∑i=1N(Xi−μ))3]=1N3(NE[(Xi−μ)3]+3N(N−1)E[(Xi−μ)E[(Xj−μ)2]+N(N−1)(N−2)E[(Xi−μ)]E[(Xj−μ)]E[(Xk−μ)]=1N2E[(Xi−μ)3]=κ3(Xi)N2
次に、次のようにをテイラー級数で展開します。h(ˉX)h(X¯)
h(ˉX)=h(μ)+h′(μ)(ˉX−μ)+12h″(μ)(ˉX−μ)2+13h‴(μ)(ˉX−μ)3+...h(X¯)=h(μ)+h′(μ)(X¯−μ)+12h′′(μ)(X¯−μ)2+13h′′′(μ)(X¯−μ)3+...
E[h(ˉX)]=h(μ)+h′(μ)E[ˉX−μ]+12h″(μ)E[(ˉX−μ)2]+13h‴(μ)E[(ˉX−μ)3]+...=h(μ)+12h″(μ)σ2N+13h‴(μ)κ3(Xi)N2+...E[h(X¯)]=h(μ)+h′(μ)E[X¯−μ]+12h′′(μ)E[(X¯−μ)2]+13h′′′(μ)E[(X¯−μ)3]+...=h(μ)+12h′′(μ)σ2N+13h′′′(μ)κ3(Xi)N2+...
さらに努力すれば、残りの用語がことを証明できます。最後に、、(これはと同じではありません)、再び同様の計算を行います:O(N−3)O(N−3)κ3(h(ˉX))=E[(h(ˉX)−E[h(ˉX)])3]κ3(h(X¯))=E[(h(X¯)−E[h(X¯)])3]E[(h(ˉX)−h(μ))3]E[(h(X¯)−h(μ))3]
κ3(h(ˉX))=E[(h(ˉX)−E[h(ˉX)])3]=E[(h(μ)+h′(μ)(ˉX−μ)+12h″(μ)(ˉX−μ)2+O((ˉX−μ)3)−h(μ)−12h″(μ)σ2N−O(N−2))3]κ3(h(X¯))=E[(h(X¯)−E[h(X¯)])3]=E[(h(μ)+h′(μ)(X¯−μ)+12h′′(μ)(X¯−μ)2+O((X¯−μ)3)−h(μ)−12h′′(μ)σ2N−O(N−2))3]
順序になる用語にのみ興味があり、余分な作業を行うと、用語「が不要であることを示すことができます。"または" "は、3番目の累乗をとる前に、順序に関してのみ結果となるためです。したがって、単純化すると、O(N−2)O(N−2)O((ˉX−μ)3)O((X¯−μ)3)−O(N−2)−O(N−2)O(N−3)O(N−3)
κ3(h(ˉX))=E[(h′(μ)(ˉX−μ)+12h″(μ)(ˉX−μ)2−12h″(μ)σ2N))3]=E[h′(μ)3(ˉX−μ)3+18h″(μ)3(ˉX−μ)6−18h″(μ)3σ6N3+32h′(μ)2h″(μ)(ˉX−μ)4+34h′(μ)h″(μ)(ˉX−μ)5−32h′(μ)2h″(μ)(ˉX−μ)2σ2N+O(N−3)]κ3(h(X¯))=E[(h′(μ)(X¯−μ)+12h′′(μ)(X¯−μ)2−12h′′(μ)σ2N))3]=E[h′(μ)3(X¯−μ)3+18h′′(μ)3(X¯−μ)6−18h′′(μ)3σ6N3+32h′(μ)2h′′(μ)(X¯−μ)4+34h′(μ)h′′(μ)(X¯−μ)5−32h′(μ)2h′′(μ)(X¯−μ)2σ2N+O(N−3)]
この製品では明らかにだった用語をいくつか省略しました。用語およびはも同様です。しかしながら、O(N−3)O(N−3)E[(ˉX−μ)5]E[(X¯−μ)5]E[(ˉX−μ)6]E[(X¯−μ)6]O(N−3)O(N−3)
E[(ˉX−μ)4]=E[1N4(N∑i=1(ˉX−μ))4]=1N4(NE[(Xi−μ)4]+3N(N−1)E[(Xi−μ)2]E[(Xj−μ)2]+0)=3N2σ4+O(N−3)E[(X¯−μ)4]=E[1N4(∑i=1N(X¯−μ))4]=1N4(NE[(Xi−μ)4]+3N(N−1)E[(Xi−μ)2]E[(Xj−μ)2]+0)=3N2σ4+O(N−3)
次に、方程式に期待値を分配します。κ3(h(ˉX))κ3(h(X¯))
κ3(h(ˉX))=h′(μ)3E[(ˉX−μ)3]+32h′(μ)2h″(μ)E[(ˉX−μ)4]−32h′(μ)2h″(μ)E[(ˉX−μ)2]σ2N+O(N−3)=h′(μ)3κ3(Xi)N2+92h′(μ)2h″(μ)σ4N2−32h′(μ)2h″(μ)σ4N2+O(N−3)=h′(μ)3κ3(Xi)N2+3h′(μ)2h″(μ)σ4N2+O(N−3)κ3(h(X¯))=h′(μ)3E[(X¯−μ)3]+32h′(μ)2h′′(μ)E[(X¯−μ)4]−32h′(μ)2h′′(μ)E[(X¯−μ)2]σ2N+O(N−3)=h′(μ)3κ3(Xi)N2+92h′(μ)2h′′(μ)σ4N2−32h′(μ)2h′′(μ)σ4N2+O(N−3)=h′(μ)3κ3(Xi)N2+3h′(μ)2h′′(μ)σ4N2+O(N−3)
これでの導出が終わりました。最後に、対称変換を導出します。κ3(h(ˉX))κ3(h(X¯))A(u)=∫u−∞1[V(θ)]1/3dθA(u)=∫u−∞1[V(θ)]1/3dθ
この変換では、がの形式の指数関数族分布、特に自然指数関数族(またはこの分布に変換されている)からのものであることが重要XiXifXi(x;θ)=h(x)exp(θx−b(θ))fXi(x;θ)=h(x)exp(θx−b(θ))
この場合、分布のキュムラントは与えられます。したがって、、、およびです。パラメータは、と書くだけで、の逆数をとるだけの関数として書くことができます。それからκk=b(k)(θ)κk=b(k)(θ)μ=b′(θ)μ=b′(θ)σ2=V(θ)=b″(θ)σ2=V(θ)=b′′(θ)κ3=b‴(θ)κ3=b′′′(θ)θθμμb′b′θ(μ)=(b′)−1(μ)θ(μ)=(b′)−1(μ)
θ′(μ)=1b″((b′)−1(μ))=1b″(θ))=1σ2θ′(μ)=1b′′((b′)−1(μ))=1b′′(θ))=1σ2
次に、分散を関数として記述し、この関数を呼び出し。μμˉVV¯
ˉV(μ)=V(θ(μ))=b″(θ(μ))V¯(μ)=V(θ(μ))=b′′(θ(μ))
それから
ddμˉV(μ)=V′(θ(μ))θ′(μ)=b‴(θ)1σ2=κ3σ2ddμV¯(μ)=V′(θ(μ))θ′(μ)=b′′′(θ)1σ2=κ3σ2
だからの関数として、。μμκ3(μ)=ˉV′(μ)ˉV(μ)κ3(μ)=V¯′(μ)V¯(μ)
今、対称の形質転換のために、我々はの歪度低減することによりなので、はです。したがって、私たちは欲しいh(ˉX)h(X¯)h′(μ)3κ3(Xi)N2+3h′(μ)2h″(μ)σ4N2=0h′(μ)3κ3(Xi)N2+3h′(μ)2h′′(μ)σ4N2=0h(ˉX)h(X¯)O(N−3)O(N−3)
h′(μ)3κ3(Xi)+3h′(μ)2h″(μ)σ4=0
および式を関数としてと、次のようになります。σ2κ3μ
h′(μ)3ˉV′(μ)ˉV(μ)+3h′(μ)2h″(μ)ˉV(μ)2=0
したがって、、。h′(μ)3ˉV′(μ)+3h′(μ)2h″(μ)ˉV(μ)=0ddμ(h′(μ)3ˉV(μ))=0
この微分方程式の1つの解決策は次のとおりです。
h′(μ)3ˉV(μ)=1、
h′(μ)=1[ˉV(μ)]1/3
したがって、任意の定数に対して、です。これにより、対称変換。ここで、は次の分散です。自然な指数関数族の平均の関数。h(μ)=∫μc1[ˉV(θ)]1/3dθcA(u)=∫u−∞1[V(θ)]1/3dθV