主成分分析(PCA)を実行するときに行う一般的なことの1つは、2つの負荷を互いにプロットして、変数間の関係を調べることです。主成分回帰とPLS回帰を行うためのPLS Rパッケージに付属するペーパーには、相関負荷プロットと呼ばれる別のプロットがあります(ペーパーの図7および15ページを参照)。相関負荷は、それが説明するように、(PCAからまたはPLS)スコアとの相関関係と実際の観測データです。
ローディングと相関ローディングは、スケーリングが少し異なることを除いて、かなり似ているように思えます。組み込みのデータセットmtcarsを使用したRでの再現可能な例は次のとおりです。
data(mtcars)
pca <- prcomp(mtcars, center=TRUE, scale=TRUE)
#loading plot
plot(pca$rotation[,1], pca$rotation[,2],
xlim=c(-1,1), ylim=c(-1,1),
main='Loadings for PC1 vs. PC2')
#correlation loading plot
correlationloadings <- cor(mtcars, pca$x)
plot(correlationloadings[,1], correlationloadings[,2],
xlim=c(-1,1), ylim=c(-1,1),
main='Correlation Loadings for PC1 vs. PC2')
これらのプロットの解釈の違いは何ですか?そして、(もしあれば)実際に使用するのに最適なプロットはどれですか?