Amos 18で構造方程式モデル(SEM)を実行しています。実験に100人の参加者(緩やかに使用)を探していましたが、SEMを成功させるにはおそらく十分ではないと思われました。SEM(EFA、CFAとともに)は「大規模なサンプル」統計手順であると繰り返し言われました。簡単に言えば、私は100人の参加者には到達しませんでした(なんて驚きです!)。問題のある2つのデータポイントを除外した後は42人しかいません。興味深いことに、とにかくこのモデルを試してみましたが、驚いたことに、非常にうまく適合しているようでした!CFI> .95、RMSEA <.09、SRMR <.08。
このモデルは単純ではありません。実際、比較的複雑だと思います。2つの潜在変数があり、1つは観測値が2つ、もう1つは観測値が5つあります。また、モデルには4つの追加の観測変数があります。間接変数と直接変数には多くの関係があり、例として、いくつかの変数は他の4つの変数に内因性があります。
私はSEMにやや不慣れです。ただし、SEMに精通している私が知っている2人の個人は、フィットインデックスが良好である限り、効果は解釈可能であり(有意である限り)、モデルに重大な「誤り」はないことを教えてくれます。いくつかの適合指数は、良好な適合を示唆するという点で小さなサンプルに対してバイアスがかけられていることを知っていますが、前述の3つはうまく見えるようで、同様にバイアスがかけられていないと思います。間接的な影響をテストするために、ブートストラップ(2000サンプル程度)を使用しています。90%のバイアス補正信頼度、モンテカルロ。さらに、3つの異なる条件に対して3つの異なるSEMを実行しています。
私はあなたの何人かを考慮したい2つの質問があります、そして、あなたが貢献する何かがあるならば、返信してください:
適合指数で実証されていないモデルに重大な弱点はありますか?小さなサンプルは研究の弱点として強調されますが、私が完全に忘れている大きな統計的問題があるかどうか疑問に思っています。将来、さらに10〜20人の参加者を獲得する予定ですが、このような分析のサンプルは比較的少ないままです。
私の小さなサンプル、または私がそれを使用しているコンテキストを考えると、ブートストラップの使用に問題はありますか?
これらの質問がこのフォーラムにとって「基本的」すぎないことを願っています。私はSEMおよび関連事項に関する多くの章を読みましたが、この分野の意見に関しては人々が非常に分散していることがわかりました!
乾杯