N101NN2k4k FFTを介したDFT計算を高速化するため。
x=(x[0],x[1],x[2],…,x[N−1])NX=(X[0],X[1],X[2],…,X[N−1])
X[m]=∑n=0N−1x[n](exp(−j2πmN))n,m=0,1,…,N−1
j=−1−−−√XxxX[0]=∑n=0N−1x[n]Nexp(−jπ)=−1X[N2]=∑n=0N−1x[n](exp(−j2πN/2N))n=∑n=0N−1x[n](−1)n
NXx m1≤m≤N−1X[m]X[N−m]=∑n=0N−1x[n](exp(−j2πmN))n=∑n=0N−1x[n](exp(−j2πN−mN))n=∑n=0N−1x[n](exp(−j2π+j2πmN))n=∑n=0N−1x[n](exp(j2πmN))n=(X[m])∗
1≤m≤N−1X[N−m]=(X[m])∗m=N/2NX[N/2]=(X[N/2])∗X[N/2]
m(N− m )
1
バツ11
x [ n ] = 1 + sin(2 π(0.01 N ))、0 ≤ N ≤ 100
x [ 0 ] = x [ 100 ] = 1101バツ[ m ] = ∑n = 0100( 1 + 罪(2 π(n100)))( exp( - jの2 πm101))n
100101バツ[m]2≤m≤99t
100t=0,0.01,0.02,…,0.99x[n]=1+sin(2π(0.01n)), 0≤n≤99.
X[m]=∑n=099(1+sin(2π(n100)))(exp(−j2πm100))n,
X=(100,−50j,0,0,…,0,50j)0≤n≤99x[n]=1100∑m=099X[m](exp(j2πn100))m=1100[100−50jexp(j2πn100)1+50j(exp(j2πn100))99]=1+12j[exp(j2πn100)−exp(j2π−n100)]=1+sin(2π(0.01n))