@Max Hutchinsonによって与えられた式をCUBlasおよびCuda Thrustに実装し、オンラインの共分散計算ツールと比較しました。私は良い結果を生み出しているようです。以下のコードはQDAベイズを計画しています。したがって、与えられた行列は複数のクラスを含む可能性があります。したがって、複数の共分散行列が計算されます。誰かのお役に立てれば幸いです。
//! Calculates one or more than one coVarianceMatrix given data.
// There can be many classes since many covariance matrixes.
/*!
\param inMatrix This vector contains matrix data in major storage.
Forexample if inMatrix=[1 2 3 4 5 6] and trialSizes=[2] this means matrix we will work on a matrix like :
|1 4 |
|2 5 |
|3 6 | -> 2 Trials, 3 Features. Columns contains feature rows contains trials (samples)
\param trialSizes There can be many classes since many covariance matrixes. Samples from all classes will be given with inMatrix.
But we need to know how many trials(samples) we have for each class.
For example if inMatrix=[1 2 3 4 5 6 7 8 9 10 11 12] and trialSizes=[2,2]
this means matrix we will work on a matrix like :
|1 4 | |7 10 |
|2 5 | |8 11 |
|3 6 | |9 12 | --> Total number of trials(samples which is total rowCount) 2 + 2 = 4 ,
So colSize = inMatrix.size()/4 = 3(feature vector size)
--> There is two element in trialSize vec so each vector has to samples
*/
void multiQDACovianceCalculator(std::vector<float>& inMatrix, std::vector<int>& trialSizes)
{
cublasHandle_t handle; // CUBLAS context
int classCount = trialSizes.size();
int rowSize = std::accumulate(trialSizes.begin(), trialSizes.end(), 0);
int dimensionSize = inMatrix.size() / rowSize;
float alpha = 1.0f;
float beta = 0.0f; // bet =1
thrust::device_vector<float> d_cov1(dimensionSize * dimensionSize);
thrust::device_vector<float> d_cov2(dimensionSize * dimensionSize);
thrust::device_vector<float> d_covResult(dimensionSize * dimensionSize);
thrust::device_vector<float> d_wholeMatrix(inMatrix);
thrust::device_vector<float> d_meansVec(dimensionSize); // rowVec of means of trials
float *meanVecPtr = thrust::raw_pointer_cast(d_meansVec.data());
float *device2DMatrixPtr = thrust::raw_pointer_cast(d_wholeMatrix.data());
auto maxTrialNumber = *std::max_element(trialSizes.begin(), trialSizes.end());
thrust::device_vector<float> deviceVector(maxTrialNumber, 1.0f);
cublasCreate(&handle);
// Inside of for loop one covariance matrix calculated each time
for (int i = 0; i < trialSizes.size(); i++)
{
// X*transpose(X) / N
alpha = 1.0f / trialSizes[i];
cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_T, dimensionSize, dimensionSize, trialSizes[i], &alpha,
device2DMatrixPtr, dimensionSize, device2DMatrixPtr, dimensionSize, &beta,
thrust::raw_pointer_cast(d_cov1.data()), dimensionSize);
// Mean vector of each column
alpha = 1.0f;
cublasSgemv(handle, CUBLAS_OP_N, dimensionSize, trialSizes[i], &alpha, device2DMatrixPtr,
dimensionSize, thrust::raw_pointer_cast(deviceVector.data()), 1, &beta, meanVecPtr, 1);
// MeanVec * transpose(MeanVec) / N*N
alpha = 1.0f / (trialSizes[i] * trialSizes[i]);
cublasSgemm(handle, CUBLAS_OP_T, CUBLAS_OP_N, dimensionSize, dimensionSize, 1, &alpha,
meanVecPtr, 1, meanVecPtr, 1, &beta,
thrust::raw_pointer_cast(d_cov2.data()), dimensionSize);
alpha = 1.0f;
beta = -1.0f;
// (X*transpose(X) / N) - (MeanVec * transpose(MeanVec) / N*N)
cublasSgeam(handle, CUBLAS_OP_N, CUBLAS_OP_N, dimensionSize, dimensionSize, &alpha,
thrust::raw_pointer_cast(d_cov1.data()), dimensionSize, &beta, thrust::raw_pointer_cast(d_cov2.data()),
dimensionSize, thrust::raw_pointer_cast(d_covResult.data()), dimensionSize);
// Go to other class and calculate its covarianceMatrix
device2DMatrixPtr += trialSizes[i] * dimensionSize;
}
printVector(d_covResult);
cublasDestroy(handle);
}