与えられたキュービット系及び従って基づいて可能測定結果を、、、、Iは、状態を準備する方法を、ここで:
唯一のこれらの測定結果は可能です(たとえば、、、)?
これらの測定値も同様に可能ですか?(ベル状態に似ていますが、結果があります)
00
と11
ディラック表記に?試しましたが$\ket{00}$
失敗しました。
与えられたキュービット系及び従って基づいて可能測定結果を、、、、Iは、状態を準備する方法を、ここで:
唯一のこれらの測定結果は可能です(たとえば、、、)?
これらの測定値も同様に可能ですか?(ベル状態に似ていますが、結果があります)
00
と11
ディラック表記に?試しましたが$\ket{00}$
失敗しました。
回答:
問題を部分的に壊します。
我々はすでに送られてきたと言うに1。1に送信できますによって√。それはあなたがすべての確率で要件を満たしている 1、しかし異なる段階で。位相シフトゲートをそれぞれに使用して、必要な位相を取得する場合は、それらをすべて等しくする必要があります。
今、どのように我々は、から入手できますかに1?1だった場合、我々は、第二量子ビットにアダマールを行うことができます。これでは簡単ではありませんが、2番目のキュービットでのみユニタリを使用できます。これは、次のように因数分解することにより、純粋に2番目のキュービットに対して回転演算子によって行われます。
動作します。必要に応じて、これをより基本的なゲートに分解します。
合計で次のものがあります。
I'll tell you how to create any two qubit pure state you might ever be interested in. Hopefully you can use it to generate the state you want.
Using a single qubit rotation followed by a cnot, it is possible to create states of the form
Then you can apply an arbitrary unitary, , to the first qubit. This rotates the and states to new states that we'll call and ,
Our entangled state is then
We can similarly apply a unitary to the second qubit.
which gives us the state
Due to the Schmidt decomposition, it is possible to express any pure state of two qubits in the form above. This means that any pure state of two qubits, including the one you want, can be created by this procedure. You just need to find the right rotation around the x axis, and the right unitaries and .
To find these, you first need to get the reduced density matrix for each of your two qubits. The eigenstates for the density matrix of your first qubit will be your and . The eigenstates for the second qubit will be and . You'll also find that and will have the same eigenvalue, which is . The coefficient can be similarly derived from the eigenvalues of and .
Here is how you might go about designing such a circuit. Suppose that you would like to produce the state . Note the normalisation of , which is necessary for to be a unit vector.
If we want to consider a straightforward way to realise this state, we might want to think in terms of the first qubit being a control, which determines whether the second qubit should be in the state , or in the state , by using some conditional operations. This motivates considering the decomposition
Which specific operations you would apply to realise these transformations — i.e. which single-qubit transformation would be most suitable for step 2, and how you might decompose the two-qubit unitary in step 3 into CNOTs and Pauli rotations — is a simple exercise. (Hint: use the fact that both and the Hadamard are self-inverse to find as simple a decomposition as possible in step 3.)
Here is an implementation of a circuit producing state on IBM Q:
Note that for on . and for first and second on .
The on prepares qubit in superposition . gates on and implements controlled Hadamard gate. When is in state the Hadamard acts on thanks to negation . This happens with probability . Since Hadamard turns to , i.e. equally distributed superposition, final states and can be measured with probability . When is in state , controled Hadamard does not act and state is measured. Since is in state with probability , is measured also with probability .