2キュビットで3つの結果の等しい重ね合わせを生成する回路を構築するにはどうすればよいですか?


18

与えられた2キュービット系及び従って4基づいて可能測定結果を{|00|01|10|11}、Iは、状態を準備する方法を、ここで:

  1. 唯一の3これらの4測定結果は可能です(たとえば、|00|01|10)?

  2. これらの測定値も同様に可能ですか?(ベル状態に似ていますが、3結果があります)


1
実際の状態を書き出すか、入力が与えられた状態を準備するための回路を作成するということですか?
ジョスEtxezarretaマルチネス

@JosuEtxezarretaMartinez、私はサーキットを意味します。
毎週

@Blue、どのようにこれらを変換するために管理DIT 0011ディラック表記に?試しましたが$\ket{00}$失敗しました。
毎週

1
@weekens「編集」をクリックすると、MathJaxコードが表示されます。また、参照これを
Sanchayan Duttaさん

1
でニール・デ・Beaudrapからソリューション ...
stestet

回答:


10

問題を部分的に壊します。

我々はすでに送られてきたと言う1001に送信できます1300+2301によって1300+(12(1+i))2301+(12(1i))2310。それはあなたがすべての確率で要件を満たしている 1SWAP、しかし異なる段階で。位相シフトゲートをそれぞれに使用して、必要な位相を取得する場合は、それらをすべて等しくする必要があります。13

今、どのように我々は、から入手できますか1001だった場合1300+2301、我々は、第二量子ビットにアダマールを行うことができます。これでは簡単ではありませんが、2番目のキュービットでのみユニタリを使用できます。これは、次のように因数分解することにより、純粋に2番目のキュービットに対して回転演算子によって行われます。1200+1201

IdU:0(0)→∣0(130+231)

動作します。必要に応じて、これをより基本的なゲートに分解します。

U=(13232313)

合計で次のものがあります。

001300+23011300+(12(1+i))2301+(12(1i))23101300+eiθ1301+eiθ2310

How do I construct U from basic gates? Let's say, from those available on IBM Q Experience.
weekens

1
@weekens There's an 'advanced' gate called U3 that allows you to implement any single qubit unitary - you input the values for θ,λ and ϕ to implement
U3(θ,λ,ϕ)=(cosθ2eiλsinθ2eiϕsinθ2ei(λ+ϕ)cosθ2),
which can be approximated using θ1.91,λ=π and ϕ=0
Mithrandir24601

To do this in basic gates, it looks like you would need to rotate into the right basis, then do a phase rotation, then rotate back which may require a fair few gates. However, in a sense, the above U3 is basic in that it's a physically implemented gate (i.e. is directly achieved by performing a couple of physical operations on the qubit instead of the many the would be required by stringing lots of 'not-advanced' gates together)
Mithrandir24601

@Mithrandir24601, thanks for your explanation! I haven't used U3 yet, will experiment with it in nearest time.
weekens

@AHusain, implemented your approach in Quirks simulator: here
weekens

8

I'll tell you how to create any two qubit pure state you might ever be interested in. Hopefully you can use it to generate the state you want.

Using a single qubit rotation followed by a cnot, it is possible to create states of the form

α|0|0+β|1|1.

Then you can apply an arbitrary unitary, U, to the first qubit. This rotates the |0 and |1 states to new states that we'll call |a0 and |a1,

U|0=|a0,U|1=|a1

Our entangled state is then

α|a0|0+β|a1|1.

We can similarly apply a unitary to the second qubit.

V|0=|b0,V|1=|b1

which gives us the state

α|a0|b0+β|a1|b1.

Due to the Schmidt decomposition, it is possible to express any pure state of two qubits in the form above. This means that any pure state of two qubits, including the one you want, can be created by this procedure. You just need to find the right rotation around the x axis, and the right unitaries U and V.

To find these, you first need to get the reduced density matrix for each of your two qubits. The eigenstates for the density matrix of your first qubit will be your |a0 and |a1. The eigenstates for the second qubit will be |b0 and |b1. You'll also find that |a0 and |b0 will have the same eigenvalue, which is α2. The coefficient β can be similarly derived from the eigenvalues of |a1 and |b1.


8

Here is how you might go about designing such a circuit. Suppose that you would like to produce the state |ψ=13(|00+|01+|10). Note the normalisation of 1/3, which is necessary for |ψ to be a unit vector.

If we want to consider a straightforward way to realise this state, we might want to think in terms of the first qubit being a control, which determines whether the second qubit should be in the state |+=12(|0+|1), or in the state |0, by using some conditional operations. This motivates considering the decomposition

|ψ=23|0|++13|1|0.
Taking this view it makes sense to consider preparing |ψ as follows:
  1. Prepare two qubits in the state |00.
  2. Rotate the first qubit so that it is in the state 23|0+13|1.
  3. Apply a coherently controlled operation on the two qubits which, when the first qubit is in the state |0, performs a Hadamard on the second qubit.

Which specific operations you would apply to realise these transformations — i.e. which single-qubit transformation would be most suitable for step 2, and how you might decompose the two-qubit unitary in step 3 into CNOTs and Pauli rotations — is a simple exercise. (Hint: use the fact that both X and the Hadamard are self-inverse to find as simple a decomposition as possible in step 3.)


0

Here is an implementation of a circuit producing state |ψ=13(|00+|01+|10) on IBM Q:

Circuit

Note that θ=1.2310 for Ry on q0. θ=π4 and θ=π4 for first and second Ry on q1.

The Ry on q0 prepares qubit in superposition |q0=23|0+13|1. Ry gates on q1 and CNOT implements controlled Hadamard gate. When q0 is in state |0 the Hadamard acts on q1 thanks to negation X. This happens with probability 23. Since Hadamard turns |0 to |+, i.e. equally distributed superposition, final states |00 and |01 can be measured with probability 13. When q0 is in state |1, controled Hadamard does not act and state |10 is measured. Since q0 is in state |1 with probability 13, |10 is measured also with probability 13.

弊社のサイトを使用することにより、あなたは弊社のクッキーポリシーおよびプライバシーポリシーを読み、理解したものとみなされます。
Licensed under cc by-sa 3.0 with attribution required.