私の[r]回答を帽子に投げ入れ、速度を最適化し、任意の長さのxで動作します(長さが20にハードコーディングされたaskerとは異なります)。
### data
set.seed(100)
x <- round(rnorm(20, sd = 0.02), 3)
### solution
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
first <- x[i]
second <- summation[i - 1]
if(sign(first) == sign(second)){
summation <- c(summation, first + second)
enn <- enn + 1
}else{
summation <- c(summation, first)
enn <- 1
}
n_of_seq <- c(n_of_seq, enn)
}
そして、現在の(非常に遅い)作業コンピューターで実行時間を比較するために、このスレッドのすべてのRソリューションを使用したマイクロベンチマークの出力を次に示します。当然のことながら、コピーと変換を最大限に活用するソリューションは遅くなる傾向がありました。
Unit: microseconds
expr min lq mean median uq max neval
my_way() 13.301 19.200 23.38352 21.4010 23.401 20604.0 1e+05
author_way() 19.702 31.701 40.12371 36.0015 40.502 24393.9 1e+05
ronak() 856.401 1113.601 1305.36419 1236.8010 1377.501 453191.4 1e+05
ameer() 388.501 452.002 553.08263 491.3000 548.701 456156.6 1e+05
andrew() 2007.801 2336.801 2748.57713 2518.1510 2760.302 463175.8 1e+05
gonzo() 21.901 35.502 48.84946 43.9010 51.001 29519.5 1e+05
-------------- EDIT -------------- @nicolaによって、私のソリューションはxの長さが長いほど最速ではないことが指摘されました-これは私はx <-c(x、y)のような呼び出しを使用して継続的にベクトルのコピーを作成しているので、かなり明白です。私は長さ= 20の最速のソリューションのみを作成し、そのために可能な限り低いマイクロベンチマークを付けました。
より公平な比較を行うために、すべてのバージョンを編集して、最速と思われる方法で元のコードを生成しましたが、そのフィードバックを歓迎します。これが私の非常に遅いシステムの完全なベンチマークコードと結果です。どんなフィードバックでも歓迎します。
# originally benchmarked a few different lengths
for(pie in c(100000)){
my_way<- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
summation <- c(x[1])
enn <- 1
n_of_seq <- c(enn)
for(i in 2:length(x)){
first <- x[i]
second <- summation[i - 1]
if(sign(first) == sign(second)){
summation <- c(summation, first + second)
enn <- enn + 1
}else{
summation <- c(summation, first)
enn <- 1
}
n_of_seq <- c(n_of_seq, enn)
}
# print(summation)
}
author_way <- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
sign_indicator <- ifelse(x > 0, 1,-1)
sky <- length(x)
number_of_sequence <- rep(NA, sky)
n <- 1
for (i in 2:sky) {
if (sign_indicator[i] == sign_indicator[i - 1]) {
n <- n + 1
} else{
n <- 1
}
number_of_sequence[i] <- n
}
number_of_sequence[1] <- 1
#############################
summation <- rep(NA, sky)
for (i in 1:sky) {
summation[i] <- sum(x[i:(i + 1 - number_of_sequence[i])])
}
}
# other ppls solutions:
ronak <- function(){
df <- data.table('x' = round(rnorm(pie, sd = 0.02), 3))
df[, c("n_of_sequence", "sum") := list(seq_len(.N), cumsum(x)),rleid(sign(x))]
}
ameer <- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
run_lengths <- rle(sign(x))$lengths
n_of_sequence <- run_lengths %>% map(seq) %>% unlist
start <- cumsum(c(1,run_lengths))
start <- start[-length(start)] # start points of each series
map2(start,run_lengths,~cumsum(x[.x:(.x+.y-1)])) %>% unlist()
}
count_and_sum <- function(x){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
runs <- rle((x > 0) * 1)$lengths
groups <- split(x, rep(1:length(runs), runs))
output <- function(group) data.frame(x = group, n = seq_along(group), sum = cumsum(group))
result <- as.data.frame(do.call(rbind, lapply(groups, output)))
`rownames<-`(result, 1:nrow(result))
}
andrew <- function(){
set.seed(100)
df <- tibble(x = round(rnorm(pie, sd = 0.02), 3)) %>%
mutate(seqno = cumsum(c(1, diff(sign(x)) != 0))) %>% #identify sequence ids
group_by(seqno) %>% #group by sequences
mutate(n_of_sequence = row_number(), #count row numbers for each group
sum = cumsum(x)) %>% #cumulative sum for each group
ungroup() %>%
select(-seqno)
}
gonzo <- function(){
set.seed(100)
x <- round(rnorm(pie, sd = 0.02), 3)
n_of_sequence <- runner::streak_run(x > 0)
sum <- runner::sum_run(x, k = n_of_sequence)
}
mi1 <- microbenchmark(my_way(), author_way(), ronak(), ameer(), andrew(), gonzo(), times = 10)
print(mi1)
}
これらの結果が示すように、私が最適化した長さ以外の長さの場合、バージョンが遅くなります。xが長くなるほど、1000を超えるすべてのもので途方もなく遅くなります。私のお気に入りのバージョンは、システムで2番目に速いRonakです。GoGonzoは、これらの長い長さで、私のマシンで最速です。
Unit: milliseconds
expr min lq mean median uq max neval
my_way() 21276.9027 21428.2694 21604.30191 21581.97970 21806.9543 21896.7105 10
author_way() 82.2465 83.0873 89.42343 84.78315 85.3638 115.4550 10
ronak() 68.3922 69.3067 70.41924 69.84625 71.3509 74.7070 10
ameer() 481.4566 509.7552 521.19034 514.77000 530.1121 579.4707 10
andrew() 200.9654 202.1898 210.84914 206.20465 211.2006 233.7618 10
gonzo() 27.3317 28.2550 28.66679 28.50535 28.9104 29.9549 10
n_of_sequence
希望するものと同一ではない